Research on hybrid transformer-based autoencoders for user biometric verification
dc.contributor.author | Havrylovych, M. P. | |
dc.contributor.author | Danylov, V. Y. | |
dc.date.accessioned | 2023-12-13T12:09:55Z | |
dc.date.available | 2023-12-13T12:09:55Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Abstract. Our current study extends previous work on motion-based biometric verification using sensory data by exploring new architectures and more complex input from various sensors. Biometric verification offers advantages like uniqueness and protection against fraud. The state-of-the-art transformer architecture in AI is known for its attention block and applications in various fields, including NLP and CV. We investigated its potential value for applications involving sensory data. The research proposes a hybrid architecture, integrating transformer attention blocks with different autoencoders, to evaluate its efficacy for biometric verification and user authentication. Various configurations were compared, including LSTM autoencoder, transformer autoencoder, LSTM VAE, and transformer VAE. Results showed that combining transformer blocks with an undercomplete deterministic autoencoder yields the best performance, but model performance is significantly influenced by data preprocessing and configuration parameters. The application of transformers for biometric verification and sensory data appears promising, performing on par with or surpassing LSTM-based models but with lower inference and training time. | uk |
dc.description.abstractother | Анотація. У дослідженні розширено попередню працю з біометричної верифікакції на основі руху з використанням сенсорних даних шляхом дослідження нових архітектур та більш складних даних від різних датчиків. Біометрична верифікація дає такі переваги, як унікальність для кожного користувача і захист від шахрайства. Архітектура трансформера, одна з найсучасніших у сфері штучного інтелекту, відома своїм юнітом уваги та застосуванням у різних сферах, включаючи NLP та CV. У праці досліджено її потенційну цінність для додатків, які обробляють сенсорні дані. Дослідження пропонує гібридну архітектуру, що об’єднує блоки уваги від трансформера з різними автокодувальниками, щоб оцінити її ефективність для біометричної верифікації та аутентифікації користувача. Порівняно різні конфігурації, включно з автокодувальником LSTM, автокодувальником на базі трансформера, LSTM VAE і VAE на основі трансформера. Результати показали, що поєднання блоків трансформера із неповним детермінованим автокодувальником дає найкращі метрики, але на показники моделі також значно впливають попереднє оброблення даних і параметри конфігурації алгоритму. Застосування трансформерів для біометричної верифікації та сенсорних даних виглядає багатообіцяльним, за метриками нарівні з моделями на основі LSTM або перевершуючи їх, проте з меншими часом обробленням сигналу і навчання моделі. | uk |
dc.format.pagerange | Pp. 42-53 | uk |
dc.identifier.citation | Havrylovych, M. P. Research on hybrid transformer-based autoencoders for user biometric verification / M. P. Havrylovych, V. Y. Danylov // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2023. – № 3. – С. 42-53. – Бібліогр.: 27 назв. | uk |
dc.identifier.doi | https://doi.org/10.20535/SRIT.2308-8893.2023.3.03 | |
dc.identifier.issn | 1681–6048 | |
dc.identifier.orcid | 0000-0002-9797-2863 | uk |
dc.identifier.orcid | 0000-0003-3389-3661 | uk |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/63065 | |
dc.language.iso | en | uk |
dc.publisher | КПІ ім. Ігоря Сікорського | uk |
dc.publisher.place | Київ | uk |
dc.relation.ispartof | Системні дослідження та інформаційні технології: міжнародний науково-технічний журнал, № 3 | uk |
dc.subject | biometric verification | uk |
dc.subject | transformers | uk |
dc.subject | variational autoencoder | uk |
dc.subject | transformer autoencoder | uk |
dc.subject | біометрична верифікація | uk |
dc.subject | транформери | uk |
dc.subject | варіаційний автокодувальник | uk |
dc.subject | автокодувальник на основі трансфомера | uk |
dc.subject.udc | 004.896 | uk |
dc.title | Research on hybrid transformer-based autoencoders for user biometric verification | uk |
dc.title.alternative | Дослідження гібридних автокодувальників з використанням трансформерів для біометричної верифікації користувача | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- 284317-670417-1-10-20231105.pdf
- Розмір:
- 251.46 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 9.1 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: