Deep learning based automatic software defects detection Framework
dc.contributor.author | Chernousov, A. | |
dc.contributor.author | Savchenko, A. | |
dc.contributor.author | Osadchyi, S. | |
dc.contributor.author | Kubiuk, Y. | |
dc.contributor.author | Kostenko, Y. | |
dc.contributor.author | Likhomanov, D. | |
dc.date.accessioned | 2020-10-15T12:17:07Z | |
dc.date.available | 2020-10-15T12:17:07Z | |
dc.date.issued | 2019 | |
dc.description.abstracten | We present the VulDetect, a source code vulnerability detection system. This system uses deep learning methods to organizate rules for deciding whether a code fragment is vulnerable. This approach is an improvement of the approach proposed in VulDeePecker. The model uses the AST representation of the source code. We compared vulnerability detection results of both systems on the Bitcoin Core project. | uk |
dc.format.pagerange | Pp. 68-74 | uk |
dc.identifier.citation | Deep learning based automatic software defects detection Framework / A. Chernousov, A. Savchenko, S. Osadchyi, Y. Kubiuk, Y. Kostenko, D. Likhomanov // Theoretical and Applied Cybersecurity : scientific journal. – 2019. – Vol. 1, Iss. 1. – Pp. 68–74. – Bibliogr.: 36 ref. | uk |
dc.identifier.doi | https://doi.org/10.20535/tacs.2664-29132019.1.169086 | |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/36778 | |
dc.language.iso | en | uk |
dc.publisher | Igor Sikorsky Kyiv Polytechnic Institute | uk |
dc.publisher.place | Kyiv | uk |
dc.source | Theoretical and Applied Cybersecurity : scientific journal, 2019, Vol. 1, No. 1 | uk |
dc.subject | vulnerability detection | uk |
dc.subject | software vulnerability | uk |
dc.subject | analyzer | uk |
dc.subject | deep learning | uk |
dc.subject | BLSTM | uk |
dc.subject | AST | uk |
dc.subject.udc | 004 | uk |
dc.title | Deep learning based automatic software defects detection Framework | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- TACS_1-1_2019_10.pdf
- Розмір:
- 789.06 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 9.06 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: