Deep learning based automatic software defects detection Framework

dc.contributor.authorChernousov, A.
dc.contributor.authorSavchenko, A.
dc.contributor.authorOsadchyi, S.
dc.contributor.authorKubiuk, Y.
dc.contributor.authorKostenko, Y.
dc.contributor.authorLikhomanov, D.
dc.date.accessioned2020-10-15T12:17:07Z
dc.date.available2020-10-15T12:17:07Z
dc.date.issued2019
dc.description.abstractenWe present the VulDetect, a source code vulnerability detection system. This system uses deep learning methods to organizate rules for deciding whether a code fragment is vulnerable. This approach is an improvement of the approach proposed in VulDeePecker. The model uses the AST representation of the source code. We compared vulnerability detection results of both systems on the Bitcoin Core project.uk
dc.format.pagerangePp. 68-74uk
dc.identifier.citationDeep learning based automatic software defects detection Framework / A. Chernousov, A. Savchenko, S. Osadchyi, Y. Kubiuk, Y. Kostenko, D. Likhomanov // Theoretical and Applied Cybersecurity : scientific journal. – 2019. – Vol. 1, Iss. 1. – Pp. 68–74. – Bibliogr.: 36 ref.uk
dc.identifier.doihttps://doi.org/10.20535/tacs.2664-29132019.1.169086
dc.identifier.urihttps://ela.kpi.ua/handle/123456789/36778
dc.language.isoenuk
dc.publisherIgor Sikorsky Kyiv Polytechnic Instituteuk
dc.publisher.placeKyivuk
dc.sourceTheoretical and Applied Cybersecurity : scientific journal, 2019, Vol. 1, No. 1uk
dc.subjectvulnerability detectionuk
dc.subjectsoftware vulnerabilityuk
dc.subjectanalyzeruk
dc.subjectdeep learninguk
dc.subjectBLSTMuk
dc.subjectASTuk
dc.subject.udc004uk
dc.titleDeep learning based automatic software defects detection Frameworkuk
dc.typeArticleuk

Файли

Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
TACS_1-1_2019_10.pdf
Розмір:
789.06 KB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
9.06 KB
Формат:
Item-specific license agreed upon to submission
Опис: