Модифікація методу розв’язуючих функцій для диференціально-різницевих ігор зближення
dc.contributor.author | Барановська, Л. В. | |
dc.date.accessioned | 2020-10-21T12:10:42Z | |
dc.date.available | 2020-10-21T12:10:42Z | |
dc.date.issued | 2012 | |
dc.description.abstracten | The subject of investigation is game problems for the object control under the conditions of counteractions. The paper suggests that the object dynamics is described by the system of difference-differential equations. We consider the approach problem with fixed time. In the course of the game the information on the initial function and the prehistory of the evader’s control is used. We suggest the way to solution of problems with fixed time. The game is completed when an integral of some numeral function describing the game course turns into a unit. An approach to solution of this game is based on the method of Resolving Functions. The research technique is based on using Minkovskii inverse functional of multi-valued maps, closely related to the given conflict-controlled process, and on constructing the resolving functions. At the heart of the method’s scheme is the L.S. Pontryagin condition making it possible to choose a pursuers’ control in the form of Borel measurable selections of special multi valued map. We show that for objects with different inertial Pontryagin’s Condition fails on some time interval. Moreover, the modification of the Pontryagin’s Condition is proposed. Specifically, we solve the similar problem to the one in “The Boy and the Crocodile” with lag. | uk |
dc.description.abstractru | Предмет исследования составляют игровые задачи управления в условиях противодействия объектов. Предполагается, что динамика процесса описывается системой дифференциально-разностных уравнений. Расмотрена задача сближения с фиксированным временем. В процессе игры используется информация о начальной функции и предыстории управления убегающего. Предложено решение задачи с фиксированным временем. Игра считается завершенной, когда интеграл от некоторой числовой функции, которая описывает процесс, становится равным единице. Метод исследования базируется на применении обратных функционалов Минковского от многозначных отображений, которые непосредственно связаны с данным конфликтно-управляемым процессом, и на построении разрешающих функций. В основе метода лежит условие Л.С. Потрягина, которое позволяет выбрать управления преследователей в виде измеримых по Борелю селекторов специального многозначного отображения. Показано, что для объектов с различной инерционностью условие Л.С. Понтрягина не выполняется на некоторых интервалах времени. Предложена ее модификация. Рассмотрен аналог задачи “Мальчик и крокодил”. | uk |
dc.description.abstractuk | Предметом дослідження є ігрові задачі керування в умовах протидії об’єктів. Припускається, що динаміка процесу описується системою диференціально-різницевих рівнянь. Розглянуто задачу зближення з фіксованим часом. У процесі гри використовується інформація про початкову функцію та передісторію керування втікача. Запропоновано метод розв’язування задачі з фіксованим часом. Гра вважається закінченою, коли інтеграл від деякої числової функції, що описує процес, стає рівним одиниці. Метод дослідження базується на використанні обернених функціоналів Мінковського від багатозначних відображень, безпосередньо пов’язаних з цим конфліктно-керованим процесом, і побудові розв’язуючих функцій. В основі схеми методу лежить умова Л.С. Понтрягіна, яка дає можливість вибрати керування переслідувачів у вигляді вимірних борелівських селекторів спеціального багатозначного відображення. Показано, що для об’єктів з різною інерційністю умова Л.С. Понтрягіна порушується на деяких інтервалах часу. Запропоновано її модифікацію. Розглянуто аналог задачі “Хлопчик і крокодил”. | uk |
dc.format.pagerange | С. 14–19 | uk |
dc.identifier.citation | Барановська, Л. В. Модифікація методу розв’язуючих функцій для диференціально-різницевих ігор зближення / Барановська Л. В. // Наукові вісті НТУУ «КПІ» : міжнародний науково-технічний журнал. – 2012. – № 4(84). – С. 14–19. – Бібліогр.: 6 назв. | uk |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/36891 | |
dc.language.iso | uk | uk |
dc.publisher | НТУУ «КПІ» | uk |
dc.publisher.place | Київ | uk |
dc.source | Наукові вісті НТУУ «КПІ»: міжнародний науково-технічний журнал, № 4(84) | uk |
dc.subject.udc | 518.9 | uk |
dc.title | Модифікація методу розв’язуючих функцій для диференціально-різницевих ігор зближення | uk |
dc.title.alternative | The Modification of the Method of Resolving Functions for the Difference-Differential Pursuit’s Games | uk |
dc.title.alternative | Модификация метода разрешающих функций для дифференциально-разностных игр сближения | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- 2012-4-2.pdf
- Розмір:
- 118.22 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 8.98 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: