Ієрархічний алгоритм мультикласифікації стадій фіброзу печінки з інтегрованим аналізом областей інтересу
Вантажиться...
Дата
2024
Науковий керівник
Назва журналу
Номер ISSN
Назва тому
Видавець
КПІ ім. Ігоря Сікорського
Анотація
Ультразвукове дослідження є провідним методом у діагностиці таких патологій, як хронічний гепатит і цироз печінки. Однак ефективність даного інструменту значною мірою залежить від кваліфікації лікаря, а інтерпретація зображень є суб'єктивною. Точна оцінка ультразвукових зображень вимагає значного досвіду фахівця в цій галузі. Впровадження автоматизованих систем класифікації стадій фіброзу печінки може стати розв’язанням проблеми нестачі висококваліфікованих радіологів, особливо в регіонах з обмеженими ресурсами. Дослідження, метою якого є розробка подібної системи, базувалося на матеріалах державної установи «Інститут ядерної медицини та променевої діагностики Національної академії медичних наук України». У дослідженні використовувався набір даних з 1059 сегментованих вручну областей інтересу з 585 ультразвукових зображень 162 пацієнтів. Кожному пацієнту була проведена біопсія печінки з подальшим гістопатологічним аналізом за системою METAVIR. Для класифікації оцінок METAVIR використовувались ансамблеві методи машинного навчання, а саме: випадковий ліс, XGBoost, LightGBM і ВЛДОС. Ефективність цих методів на різних стадіях фіброзу печінки оцінювалась за допомогою таких показників, як точність, чутливість і специфічність. Найкращі результати показали LightGBM (82% точності на тестовому наборі в задачі “F0-1 проти F2-4”, 86% точності в задачі “F0-2 проти F3-4” і 96% точності в задачі “F0-3 проти F4”) і ВЛДОС (77% точності в задачі “F0 проти F1-4”). При використанні цих моделей в запропонованому ієрархічному алгоритмі мультикласифікації стадій фіброзу була досягнута точність 99% для всіх суб’єктів. Результати дослідження підтверджують ефективність запропонованого алгоритму для визначення конкретної стадії фіброзу печінки за системою METAVIR з використанням звичайних ультразвукових зображень у В-режимі. Це відкриває перспективу швидкої та точної діагностики без необхідності використання додаткового обладнання або тестових процедур, що робить цю технологію потенційно корисною для підтримки діагностичних можливостей радіологів у клінічних умовах.
Опис
Ключові слова
фіброз печінки, машинне навчання, аналіз медичних зображень, моделювання, ультразвукова візуалізація, Liver Fibrosis, Machine Learning, Medical Images Analysis, Modeling, Ultrasound Imaging
Бібліографічний опис
Ієрархічний алгоритм мультикласифікації стадій фіброзу печінки з інтегрованим аналізом областей інтересу / Бабенко Віталій Олегович, Настенко Євген Арнольдович, Солодущенко Володимир В’ячеславович, Павлов Володимир Анатолійович, Дикан Ірина Миколаївна // Біомедична інженерія і технологія. – 2024. – № 14. – С. 64-73. – Бібліогр.: 19 назв.