Дослідження і прогнозування успішності стартапів платформи kickstarter
dc.contributor.author | Кузнєцова, Н. В. | |
dc.contributor.author | Грушко, Я. В. | |
dc.date.accessioned | 2022-05-16T14:12:51Z | |
dc.date.available | 2022-05-16T14:12:51Z | |
dc.date.issued | 2019 | |
dc.description.abstracten | The main purpose of the study, carried out in the work, was to identify and predict the success of new start-up projects. The task of predicting the success of one or another startup was solved, various methods of data analysis, such as methods of extreme gradient boosting and k-nearest neighbors, were used. They allowed to predict with high precision the success of the project, and the method of extreme gradient boosting was the most effective. The use of survival models allowed us to estimate the average time spent working on a successful startup, as well as identify those key industries for which startups become effective, predicting for each of them the required time to turn a progressive idea into a successful business. The most successful categories of start-up projects were also identified, and the time required to achieve the success (survival) of projects as a whole and for specific project categories was predicted. For this purpose, survival models were constructed on the basis of Cox proportional risks and Kaplan-Meyer models. | uk |
dc.format.pagerange | С. 18-32 | uk |
dc.identifier.citation | Кузнєцова, Н. В. Дослідження і прогнозування успішності стартапів платформи kickstarter / Н. В. Кузнєцова, Я. В. Грушко // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2019. – № 3. – С. 18-32. – Бібліогр.: 15 назв. | uk |
dc.identifier.doi | https://doi.org/10.20535/SRIT.2308-8893.2019.3.02 | |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/47359 | |
dc.language.iso | uk | uk |
dc.publisher | КПІ ім. Ігоря Сікорського | uk |
dc.publisher.place | Київ | uk |
dc.source | Системні дослідження та інформаційні технології, № 3 | uk |
dc.subject | Forecasting | uk |
dc.subject | Extreme Gradient Boosting Method | uk |
dc.subject | K-nearest Neighbor Method | uk |
dc.subject | Survival Models | uk |
dc.subject | Startups | uk |
dc.subject | Project Success | uk |
dc.subject | Kickstarter Platform | uk |
dc.subject.udc | 303.732.4 | uk |
dc.title | Дослідження і прогнозування успішності стартапів платформи kickstarter | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- 2019_3_18-32.pdf
- Розмір:
- 452.6 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 9.1 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: