Deep learning-based neural network for regions of interest retrieval in T2*-weighted brain perfusion MRI
dc.contributor.author | Alkhimova, Svitlana Mykolaivna | |
dc.contributor.author | Diumin, Oleksii Dmytrovych | |
dc.date.accessioned | 2023-01-31T15:15:10Z | |
dc.date.available | 2023-01-31T15:15:10Z | |
dc.date.issued | 2022 | |
dc.description.abstracten | Brain region segmentation is usually the first step for dynamic susceptibility contrast perfusion analysis. Although manual segmentation is more accurate, it is a time-consuming and not sufficiently reproducible process. Clinicians still rely on manual segmentation especially for cases with abnormal brain anatomy, as removing brain parts or inclusion of non-brain tissues can be a potential source of falsely high or falsely low values of perfusion parameters. This study proposes an effective deep learning-based neural network for fully automatic segmentation of brain from non-brain tissues in T2*-weighted magnetic resonance images with abnormal brain anatomy. Our neural network architecture combines U-Net and ResNet with plugged spatial and channel squeeze and excitation attention modules into the ResNet backbone. The train, validation, and test processes are conducted on 32 three-dimensional volumes of different subjects from the TCGA glioblastoma multiforme collection. Four performance metrics are used in our experiments: Dice coefficient, sensitivity, specificity, and accuracy. Quantitative results (i.e., Dice coefficient of 0.9726 +/- 0.004, sensitivity of 0.9514+/-0.007, specificity of 0.9983+/-0.001, and accuracy of 0.9864+/-0.003) reveal that the proposed neural network architecture is efficient and accurate for brain segmentation. The obtained results also demonstrate that the training model using the proposed U-Net+ResNet architecture of the neural network provides the best Dice coefficient, specificity, and accuracy metric values compared to current methods under the same hardware conditions and using the same test dataset of magnetic resonance images of a human head with abnormal brain anatomy. Moreover, obtained results also indicate that the proposed U-Net+ResNet architecture of deep learning-based neural network could be good enough in a clinical setup to reduce the need for time-consuming and non-reproducible manual segmentation. | uk |
dc.format.pagerange | С. 301-314 | uk |
dc.identifier.citation | Alkhimova, S. M. Deep learning-based neural network for regions of interest retrieval in T2*-weighted brain perfusion MRI / S. M. Alkhimova, O. D. Diumin // Science and Technology Today. – 2022. – V. 14, N. 14. – P. 301-314. | uk |
dc.identifier.doi | https://doi.org/10.52058/2786-6025-2022-14(14)-301-314 | |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/52237 | |
dc.language.iso | en | uk |
dc.publisher | Видавнича група «Наукові перспективи» | uk |
dc.publisher.place | Київ | uk |
dc.source | «Наука і техніка сьогодні» (Серія «Педагогіка», Серія «Право», Серія «Економіка», Серія «Фізико-математичні науки», Серія «Техніка»)»: журнал, 2022, No 14(14) | uk |
dc.subject | brain | uk |
dc.subject | segmentation | uk |
dc.subject | region of interest | uk |
dc.subject | deep neural network | uk |
dc.subject | dynamic susceptibility contrast perfusion | uk |
dc.subject | magnetic resonance imaging | uk |
dc.subject.udc | 004.932:616-073.756.8 | uk |
dc.title | Deep learning-based neural network for regions of interest retrieval in T2*-weighted brain perfusion MRI | uk |
dc.title.alternative | Нейронна мережа на основі глибокого навчання для отримання зон інтересу на T2*-зважених перфузійних зображеннях МРТ мозку | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Alkhimova_Diumin.pdf
- Розмір:
- 639.55 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 1.71 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: