Статті (ММАД)
Постійне посилання зібрання
У зібранні розміщено матеріали, що опубліковані або готуються до публікації в наукових журналах та збірниках.
Переглянути
Перегляд Статті (ММАД) за Автор "Khaidurov, Vladyslav"
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Acceleration of computations in modelling of processes in complex objects and systems(Інститут загальної енергетики НАН України, 2024) Khaidurov, Vladyslav; Tatenko, Vadym; Lytovchenko,; Tsiupii, Tamara; Zhovnovach, TetianaThe development of methods of parallelization of computing processes, which involve the decomposition of the computational domain, is an urgent task in the modeling of complex objects and systems. Complex objects and systems can contain a large number of elements and interactions. Decomposition allows you to break down a system into simpler subsystems, which simplifies the analysis and management of complexity. By dividing the calculation area of the part, it is possible to perform parallel calculations, which increases the efficiency of calculations and reduces simulation time. Domain decomposition makes it easy to scale the model to work with larger or more detailed systems. With the right choice of decomposition methods, the accuracy of the simulation can be improved, since different parts of the system may have different levels of detail and require appropriate methods of additional analysis. Decomposition allows the simulation to be distributed between different participants or devices, which is relevant for distributed systems or collaborative work on a project. In this work, mathematical models are built, which consist in the construction of iterative procedures for "stitching" several areas into a single whole. The models provide for different complexity of calculation domains, which makes it possible to perform different decomposition approaches, in particular, both overlapping and non-overlapping domain decomposition. The obtained mathematical models of subject domain decomposition can be applied to objects and systems that have different geometric complexity. Domain decomposition models that do not use overlap contain different iterative methods of "stitching" on a common boundary depending on the types of boundary conditions (a condition of the first kind is a Dirichlet condition, or a condition of the second year is a Neumann condition), and domain decomposition models with an overlap of two or more areas consist of the minimization problem for constructing the iterative condition of "stitching" areas. It should be noted that the obtained models will work effectively on all applied tasks that describe the dynamic behavior of objects and their systems, but the high degree of efficiency of one model may be lower than the corresponding the degree of effectiveness of another model, since each task is individual.Документ Відкритий доступ Methods And Algorithms Of Swarm Intelligence For The Problems Of Nonlinear Regression Analysis And Optimization Of Complex Processes, Objects, And Systems: Review And Modification Of Methods And Algorithms(Інститут загальної енергетики НАН України, 2024-07) Khaidurov, Vladyslav; Tatenko, Vadym; Lytovchenko, Mykyta; Tsiupii, Tamara; Zhovnovach, TetianaThe development of high-speed methods and algorithms for global multidimensional optimization and their modifications in various fields of science, technology, and economics is an urgent problem that involves reducing computing costs, accelerating, and effectively searching for solutions to such problems. Since most serious problems involve the search for tens, hundreds, or thousands of optimal parameters of mathematical models, the search space for these parameters grows non-linearly. Currently, there are many modern methods and algorithms of swarm intelligence that solve today's scientific and applied problems, but they require modifications due to the large spaces of searching for optimal model parameters. Modern swarm intelligence has significant potential for application in the energy industry due to its ability to optimize and solve complex problems. It can be used to solve scientific and applied problems of optimizing energy consumption in buildings, industrial complexes, and urban systems, reducing energy losses, and increasing the efficiency of resource use, as well as for the construction of various elements of energy systems in general. Well-known methods and algorithms of swarm intelligence are also actively applied to forecast energy production from renewable sources, such as solar and wind energy. This allows better management of energy sources and planning of their use. The relevance of modifications of methods and algorithms is due to the issues of speeding up their work when solving machine learning problems, in particular, in nonlinear regression models, classification, and clustering problems, where the number of observed data can reach tens and hundreds of thousands or more. The work considers and modifies well-known effective methods and algorithms of swarm intelligence (particle swarm optimization algorithm, bee optimization algorithm, differential evolution method) for finding solutions to multidimensional extremal problems with and without restrictions, as well as problems of nonlinear regression analysis. The obtained modifications of the well-known classic effective methods and algorithms of swarm intelligence, which are present in the work, effectively solve complex scientific and applied tasks of designing complex objects and systems. A comparative analysis of methods and algorithms will be conducted in the next study on this topic.