Статті (ММАД)
Постійне посилання зібрання
У зібранні розміщено матеріали, що опубліковані або готуються до публікації в наукових журналах та збірниках.
Переглянути
Перегляд Статті (ММАД) за Автор "Shelestov, Andrii"
Зараз показуємо 1 - 9 з 9
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Air Quality Estimation in Ukraine Using SDG 11.6.2 Indicator Assessment(Remote Sensing, 2021-11) Shelestov, Andrii; Yailymova, Hanna; Yailymov, Bohdan; Kussul, NataliiaДокумент Відкритий доступ Assessing damage to agricultural fields from military actions in Ukraine: An integrated approach using statistical indicators and machine learning(2023) Kussul, Nataliia; Drozd, Sofiia; Yailymova, Hanna; Shelestov, Andrii; Lemoine, Guido; Deininger, KlausThe ongoing full-scale Russian invasion of Ukraine has led to widespread damage of agricultural lands, jeopardizing global food security. Timely detection of impacted fields enables quantification of production losses, guiding recovery policies and monitoring military actions. This study presents a robust methodology to automatically identify agricultural areas damaged by wartime ground activities using free Sentinel-2 satellite data. The 10 m resolution spectral bands and vegetation indices are leveraged, alongside their statistical metrics over time, as inputs to a Random Forest classifier. The algorithm efficiently pinpoints damaged fields, with accuracy metrics around 0.85. Subsequent anomaly detection delineates damages within the fields by combining spectral bands and indices. Applying the methodology over 22 biweekly periods in 2022, approximately 500 thousand ha of cropland across 10 regions of Ukraine were classified as damaged, with the most significant impacts occurring from March to September. The algorithm provides updated damage information despite cloud cover and vegetation shifts. The approach demonstrates the efficacy of automated satellite monitoring to assess agricultural impacts of military actions, supporting recovery analysis and documentation of war crimes.Документ Відкритий доступ Crop Yield Forecasting for Major Crops in Ukraine(IEEE, 2021) Shelestov, Andrii; Shumilo, Leonid; Yailymova, Hanna; Drozd, SophiaДокумент Відкритий доступ Discrete Atomic Transform-Based Lossy Compression of Three-Channel Remote Sensing Images with Quality Control(Remote Sensing, 2021) Makarichev, Victor; Vasilyeva, Irina; Lukin, Vladimir; Vozel, Benoit; Shelestov, Andrii; Kussul, NataliiaДокумент Відкритий доступ Fire Danger Assessment Using Moderate-Spatial Resolution Satellite Data(MDPI, 2023) Kussul, Nataliia; Fedorov, Oleh; Yailymov, Bohdan; Pidgorodetska, Liudmyla; Kolos, Liudmyla; Yailymova, Hanna; Shelestov, AndriiFire is one of the most common disturbances in natural ecosystems. The analysis of various sources of information (official and unofficial) about the fires in Ukraine (2019–2020) showed a lack of timely and reliable information. Satellite observation is of crucial importance to provide accurate, reliable, and timely information. This paper aims to modify the index of fire danger of a forest’s FWI by increasing its precision, based on the use of higher spatial resolution satellite data. A modification of the FWI method involves the utilization of the soil moisture deficit, in addition to the six subindices of the FWI system. In order to calculate the subindices values, weather data from the Copernicus Atmosphere Monitoring Service were used. Soil moisture deficit is calculated using Sentinel-1 radar satellite data on the water saturation degree of the soil surface layer and geospatial parameters from the 3D Soil Hydraulic Database of Europe. The application of the proposed methodology using the specified satellite, weather, and geospatial data makes it possible to assess fire danger on a continental scale with a spatial resolution of 250 m, 1 km, and a daily temporal resolution. Validation of the proposed method for modifying the FWI system demonstrates an improvement in the precision and relevance of fire danger prediction.Документ Відкритий доступ Google Earth Engine Framework for Satellite Data-Driven Wildfire Monitoring in Ukraine(MDPI, 2023-10) Yailymov, Bohdan; Shelestov, Andrii; Yailymova, Hanna; Shumilo, LeonidWildfires cause extensive damage, but their rapid detection and cause assessment remains challenging. Existing methods utilize satellite data to map burned areas and meteorological data to model fire risk, but there are no information technologies to determine fire causes. It is crucially important in Ukraine to assess the losses caused by the military actions. This study proposes an integrated methodology and a novel framework integrating burned area mapping from Sentinel-2 data and fire risk modeling using the Fire Potential Index (FPI) in Google Earth Engine. The methodology enables efficient national-scale burned area detection and automated identification of anthropogenic fires in regions with low fire risk. Implemented over Ukraine, 104.229 ha were mapped as burned during July 2022, with fires inconsistently corresponding to high FPI risk, indicating predominantly anthropogenic causes.Документ Відкритий доступ Quantifying War-Induced Crop Losses in Ukraine in Near Real Time to Strengthen Local and Global Food Security(Elsevier Ltd, 2023) Deininger, Klaus; Ali, Daniel Ayalew; Kussul, Nataliia; Shelestov, Andrii; Lemoine, GuidoWe use a 4-year panel (2019–2022) of 10,125 village councils in Ukraine to estimate effects of the war started by Russia on area and expected yield of winter crops aggregated up from the field level. Satellite imagery is used to provide information on direct damage to agricultural fields; classify crop cover using machine learning; and compute the Normalized Difference Vegetation Index (NDVI) for winter cereal fields as a proxy for yield. Without conflict, winter crop area would have been 9.35 rather than 8.38 million ha, a 0.97 million ha reduction, only 14% of which can be attributed to direct conflict effects. The estimated drop associated with the conflict in NDVI for winter wheat, which is particularly pronounced for small farms, translates into an additional reduction of output by about 1.9 million tons for a total of 4.84 million tons. Taking area and yield reduction together suggests a war-induced loss of winter wheat output of up to 17% assuming the 2022 winter wheat crop was fully harvested.Документ Відкритий доступ Використання супутникових продуктів для аналізу змін територій природно-заповідного фонду України(Проблем и керування та інформатики, 2022) Yailymov, Bohdan; Yailymova, Hanna; Shelestov, Andrii; Lavreniuk, AllaДокумент Відкритий доступ Інтелектуальні методи та моделі обробки супутникових даних у задачі моніторингу звалищ(Проблем и керування та інформатики, 2022) Yailymova, Hanna; Yailymov, Bohdan; Shelestov, Andrii; Krasilnikova, Tetiana