2023
Постійне посилання на фонд
Переглянути
Перегляд 2023 за Автор "Peretyatko, J."
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Effect of discharge current magnitude on effectiveness of overhead power line protection against direct lightning strokes(КПІ ім. Ігоря Сікорського, 2023) Trotsenko, Y.; Yandulskyy, O.; Dixit, M.; Peretyatko, J.In this paper the efficiency of lightning shielding provided by single overhead ground wire mounted atop of a double circuit self-supported 220 kV lattice power transmission line tower with a total height of 37.115 m was examined. According to the electro-geometric concept, each phase conductor of a power transmission line has an area where the overhead ground wire does not provide full protection against a direct lightning strike. The width of this unprotected area depends on the design and dimensions of overhead power line tower, the expected magnitude of the lightning current and decreases with increasing magnitude of the discharge current. The lightning protection effectiveness of upper and middle phase conductors was studied. The values of the minimum lightning current, capable of causing an insulation flashover in case of the lightning shielding failure were calculated. The minimum values of the lightning current at which complete shielding is achieved have also been determined. It was found that for upper phase conductor the minimum current at which a complete lightning shielding is achieved is 7.597 kA, and it is smaller than minimum current of 8.604 kA capable to cause an electrical flashover of the transmission line insulation. For middle phase conductor the lowest current at which a complete lightning shielding is achieved is 5.976 kA, that is much smaller than minimum current of 9.206 kA leading to an insulation flashover. The results show that the specified overhead power line is protected from dangerous lightning currents. However, computations show that downward lightning flashes having a smaller current magnitude are able to bypass the shield wire and hit the phase conductors. In this regard, due to unpredictable nature of lightning, to improve the lightning protection of power lines, other measures can be applied, including the use transmission line arresters mounted on or near towers at individual points of the power line. When thunderstorm activity increases due to global warming, strengthening of lightning protection measures is justified.Документ Відкритий доступ Electricity transmission and environment: effect of wind loads on lightning shielding performance of overhead power lines(КПІ ім. Ігоря Сікорського, 2023) Trotsenko, Y.; Katsadze, T.; Dixit, M.; Peretyatko, J.In this paper the estimation of wind load effect on the lightning shielding performance of overhead power lines was performed. According to electro-geometrical model any phase conductor has horizontal exposure width where this conductor is not protected against lightning by the overhead ground wire. A typical double circuit 220 kV lattice power transmission line tower was considered. Obtained results demonstrate that in the presence of thundercloud in windy conditions unprotected distance of phase conductor may increase due to deflections of phase conductors. Geometric locations of the conductor attachment points on the suspension insulator string and the lower point of the conductor sagging were calculated in the range of wind pressure from 0 to 800 Pa. This allowed to determine the exposure width values of a 220 kV overhead power line upper phase conductor in the same range of wind pressure values. The results show that for a minimum lightning current of 3 kA, the unprotected distance increases by 4.323 times from 4.167 m to 18.013 m when the wind pressure increases from 0 to 800 Pa (from 0 to 36.140 m/s). For a minimum lightning current of 5 kA, the unprotected distance increases by 7.735 times from 2.825 m to 21.851 m when wind pressure and wind speed vary in the same range. Although the transmission line is reliably protected against lightning strikes with currents greater than 16 kA at wind pressure of up to 200 Pa (18.070 m/s), when the wind pressure increases from 300 Pa to 800 Pa (from 22.131 m/s to 36.140 m/s), the unprotected area increases from 4.752 m to 26.204 m. In Summary, the results show that the influence of wind load must be taken into account in the tasks of calculating lightning protection of overhead power lines. Further efforts should be focused on studying the lightning shielding performance of overhead power lines of higher voltage classes.