Інформаційні системи, механіка та керування: науково-технічний збірник, Вип. 20
Постійне посилання зібрання
Переглянути
Перегляд Інформаційні системи, механіка та керування: науково-технічний збірник, Вип. 20 за Автор "Кузьмич, Л. В."
Зараз показуємо 1 - 1 з 1
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Цифровий метод корекції температурної похибки вимірювання тензодатчиком(КПІ ім. Ігоря Сікорського, 2019) Кузьмич, Л. В.This article is aimed at finding the opportunities to improve the remote measurements accuracy and noise immunity of the stress - strain state measuring, in particular in a detailed study of the polynomial coefficients behavior for the most used temperatures range of load cells. Based on the analysis of destabilizing factors, it is established that among the main destabilizing factors that limit the measurement accuracy of instrument systems equipped with strain gauges are the effects of external climatic and mechanical factors, in particular temperature, humidity and so on. The temperature change range influence on the most common materials used for the of strain gauges manufacturing, namely, karma and constan, alloys with a minimum temperature coefficient of resistance, is investigated The variation of the temperature error values ( 10%) on the rms error of the approximation error by power polynomials was investigated. The NUMERY package determines the dependence of the approximation error on the order of the approximating polynomial revealed that over a wide temperature range the errors for the karma and the constan have a weak relationship with the polynomial order. Calculations indicate that by narrowing the temperature range the error sharply depends on the order of the approximating polynomial, and at the sixth order it almost becomes zero. The effect of tabulated accuracy recording on polynomial coefficients was also investigated, and it was determined that a random error in the coefficients determination up to 10% for the karma and the constan practically does not affect the mean square error of approximation. The influence of the temperature range changing and the temperature error values variation on the rms error of the approximation error by power polynomials is investigated. The NUMERY package determines the dependence of the approximation error on the order of the approximating polynomial. A digital temperature error correction method that allows the correction of sensor errors by using TEDS is proposed. The algorithm efficiency in terms of nonlinearity of the temperature error is determined by the accuracy of the fit of the approximating polynomial.