Магістерські роботи (ФМТО)
Постійне посилання зібрання
У зібранні розміщено магістерські дисертації на здобуття ступеня магістра.
Переглянути
Перегляд Магістерські роботи (ФМТО) за Ключові слова "539.264"
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Change in structural and potentiodynamic characteristics of SiO2/TiO2 nanocomposite due to changing mechanosynthesis duration(Igor Sikorsky Kyiv Polytechnic Institute, 2023) Tiancheng, An; Yavorskyi, YuriiStructure and scope of practice work. The paper consists of 6 chapters. literature review, research materials and methods, results, occupational health and safety in emergencies, economic section, development startup project, conclusions and reference list. This work include: 111 pages, 51 figures, 23 tables, 13 formulas, 58 references. Actuality. Modern technology requires the creation of new materials with the best electro-chemical and operational properties that meet the criteria of manufacturability, environmental friendliness, and low cost. Therefore, the study of the properties of materials with unique features is undoubtedly relevant. This work presents the study the of influence of the duration of mechanoactivation SiO2/TiO2 mixture with a component ratio of (80/20) % on the structure characteristics. The purpose and tasks of the research. The work aimed to determine the effect of the duration of mechanical processing on the structural characteristics of the powder SiO2/TiO2 nanocomposite and dependence between the changes in structure and electrochemical characteristics. The object of the study – 80 % SiO2/20 % TiO2 nanocomposite after different duration of treatment. The subject of research – X-Ray diffraction patterns, ultra soft X-ray emission specters (USXE) and potenciodynamic (PD) data. Methods of research – XRD, USXE spectroscopy, PD investigation. Scientific innovation. The renowned technique of shock-vibration processing enables the amalgamation of the distinctive characteristics of nano-powder materials. The pioneering aspect of this research lies in ascertaining the impact of mechanical activation on the crystal-structural parameters of the SiO2/TiO2 nanocomposite, and PD characteristics of lithium power sourses.Документ Відкритий доступ The effect of mechanical processing duration of the nanopowdered SiO2/TiO2 composite on the morphology and galvanostatic characteristics of lithium power sources(Igor Sikorsky Kyiv Polytechnic Institute, 2023) Yulong, Guo; Yavorskyi, YuriiStructure and scope of master theses. It consists of seven 8 parts: literature review, research materials and methods, results, occupational health and safety in emergencies, economic section, development startup project, conclusions and reference list. Master thesis include: 101 pages, 67 pictures, 20 tables, 86 references. Actuality. Modern electronics require the use of portable energy sources with high indicators of electrochemical characteristics. Currently, the most promising means of energy conservation are lithium power sources (LPS). The purpose and tasks of the research. The aim of the work was to determine the effect of the duration of mechanical processing on the morphology of the powder SiO2/TiO2 nanocomposite and electrochemical characteristics of LPS with cathodes based on such nanocomposites. The object of the study – SiO2/TiO2 nanocomposite with a component ratio of 80/20 % after different duration of treatment. Subject of research – SEM images with magnification 500 and 2500 times, data of USXES and galvanostatic investigation. Methods of research – SEM, USXES, galvanostatic analysis. Scientific innovation. The determination of the effect of mechanical activation on the morphological features of SiO2/TiO2 nanocomposite and dependence of galvanostatic characteristics of LPS from these features. Practical significance of the obtained results. The generalized results can be used to predict changes in the structural and electrochemical characteristics of LPS with cathodes based on other nanosized oxides. Approbation of coursework materials. The result of work presented in the international conferences HighMatTech-23 and XIX – ICPTTFN.