Магістерські роботи (ПМА)
Постійне посилання зібрання
Переглянути
Перегляд Магістерські роботи (ПМА) за Ключові слова "519.688:004.855.5"
Зараз показуємо 1 - 10 з 10
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Mathematical software and computer program for the problem of clustering text articles(КПІ ім. Ігоря Сікорського, 2023) Hamad Naser, J. H.; Tretynyk, Violeta VikentiivnaThe thesis is presented in 85 pages. It contains 2 appendix and bibliography of 19 references, 19 figures and 4 tables are given in the thesis, the presentation slides. Topic Relevance. As we know, today's world is digital, and many people use websites and the Internet and work online. They are looking for their favorite information on any website. Still, have we ever asked ourselves how this information is achieved in a concise time, with millions of pieces of information estimated for the phrase we have entered a reasonable result? In this work, we consider how to solve text classification problems using mathematical software and computer programs and how to determine, like phrases, you can. Provide as much information as possible, accurate or similar, without error or absence. This is done through a number of models and algorithms, each of which is described in detail below. Therefore, our thesis is on the problem of text classification through mathematics and software so that we can solve these problems or eliminate them to a large extent. Clustering text content is essential in extracting useful information online or from other text resources. The common task in text clustering is to process text in a multidimensional space and break up documents into groups, where each group contains similar documents. However, this strategy does not have a comprehensive view of people as a whole, since it cannot explain the main topic of each cluster. The use of semantic information may solve this problem, but it requires a clearly defined ontology or pre-marked gold standard. In this work, we present the thematic algorithm of the clustering of text documents. Given text, thematic terms are extracted and used to cluster documents in a probabilities structure. Purpose and objectives of the study: Clustering aims to identify different groups in the data set. Mathematical software and computer program for the problem of clustering text data to improve the quality and productivity of staff working with text documents. The basic idea of model-based clustering is to approximate the density of the mixture model data. The purpose of the work is to develop mathematical software and computer programs for clustering text articles to visualize objects and automatically detect groups of semantically similar documents among a given fixed set. The end result and purpose of the work: Mathematical software and computer programs for the task of clustering text articles to improve the quality and productivity of staff working with text documents. Object of research: Methods of clustering of text data, methods of Data mining, methods of selection of non-informative words: removal of stop words, stemming and casting of register. Methods for selecting keywords and classifying results: dictionary, statistical, TF-IDF measure, F – measure. Subject of research: Algorithm of realization of division into clusters of text articles. Models of verification (adequacy verification) of the algorithm. Comparative analysis of clustering algorithms for text articles on mathematical and software. Connection of work with scientific programs, plans and topics: The work was carried out at the Department of Applied Mathematics of the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute “within the topic “Mathematical software and computer program for the problem of clustering text article. Methods of research: The following methods were used to solve this problem: methods of the theory of systems analysis, systems engineering, modeling, Data Science systems design, natural language processing, methods of mathematical statistics, classical data analysis, machine learning, big data theory methods, data visualization and methods of clustering. Scientific novelty: New scientific results are presented in developing and implementing text classification methods and finding problems. In this regard, we are trying to make it easier for the user to get a lot of subjects and to recognize words and classify them to the most meanings so that we can get a lot of results and accurate fulfillment, and that's through it. Mathematical software and computer programs are performed using device study algorithms and creating a suitable system. The practical value of obtained results: This system that we have developed is significant in the field of online or the Internet. We have undertaken to solve the problems that face text classification. This system can be used for the search process, finding similar phrases, solving stopping problems, and finding the best results in the shortest time, and what is essential is that it saves you time. This system recognizes and provides the results as soon as possible. This is recognized by the system and provides the results with the most results, which we are trying to do here on: Mathematical software and computer program for the problem of clustering text articles. Approbation of the thesis results: Publications: V. Tretynyk, Naser J. Hamad SYSTEM OF CLASTERIZATION OF ARABIC PAPERS // Прикладнаматематика та комп’ютинг. ПМК, 2022 :п’ятнадцятанаук. конф. магістрантів та аспірантів, Київ 16-18 лист. 2022: зб. тез доп. / [редкол.: Дичка І. та ін.]. – К. : Просвіта, 2022. – с. 180-186.Документ Відкритий доступ Математичне та програмне забезпечення системи класифікації сканованих документів для ділового документообігу(КПІ ім. Ігоря Сікорського, 2023) Пащенко, Катерина Михайлівна; Норкін, Богдан ВолодимировичДисертацію виконано на 96 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 28 найменувань. У роботі наведено 51 рисунки. Актуальність теми. На сьогодні все більше документів, таких як текстові документи, таблиці, схеми, платежів, заявки на роботу, різноманітні форми зберігаються та обробляються в форматі цифрового зображення. Також постає необхідність систематизовувати попередньо створені документи в паперовому вигляді та вилучати з них корисну інформацію. Тому актуальною є тематика пов’язана з класифікацією документів, адже саме це відіграє важливу роль у завданнях систематизації, сортуванні, класифікації сканованих чи сфотографованих документів в процесі ділового документообігу. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Метою дисертаційної роботи є підвищення ефективності роботи в завданнях класифікації та систематизації сканованих документів в процесі ділового документообігу. Для досягнення мети було визначено наступні завдання: - виконати аналіз існуючих систем класифікації документів; - виконати аналіз існуючих методів аналізу, передбачення та класифікації категоріальних даних; - визначити підсистеми майбутньої розробленої системи класифікації; - обрати алгоритм машинного навчання для кожної з підсистеми; - розробити процедуру підготовки вхідних даних; - спроектувати автоматизовані підсистем; - здійснити програмну реалізацію спроектованих підсистем; - провести тестування розробленої ситеми та верифікацію результатів. Методи дослідження. Для досягнення поставленої мети використовувалися такі методи: алгоритми машинного навчання, методи для обробки цифорових зображень, методи оптимізації гіперпараметрів та параметрів згорткової нейронної мережі, методи проектування систем Data Science, методи теорії алгоритмів та програмування, методи аналізу даних та математичної статистики. Об’єктом дослідження є методи класифікації документів на основі структури документу. Предметом дослідження є реалізація моделі класифікації сканованих документів для підвищення ефективності в системах електронних офісів. Наукова новизна. Удосконалено архітектуру згорткової нейронної мережі, яка за показниками точності та повноти не поступається відомим аналогам, але потребує менше часу на навчання, швидше класифікує цифрові зображення сканованих документів та потребуює менше ресурсів для розгортання і використання. Практична цінність одержаних результатів. На основі запропонованої системи для класифікації реалізовано програмний модуль для класифікації сканованих документів, що дозволяє провести систематизацію та сортування одиниць в сфері документообігу з можливістю подальшої обробки документів. Апробація результатів дисертації. Основні положення та результати роботи представлено та опубліковано на конференції ПМК 2022 (Прикладна Математика та Комп’ютинг). Публікації. Норкін Б. М., Пащенко К.М., Математичне та програмне забезпечення системи класифікації цифрових зображень текстових документів. Прикладна математика та комп’ютинг. ПМК-2022: п’ятнадцята науково-практична конференція магістрантів та аспірантів, Київ, 16-17 лист. 2022 р.: зб. Тез доп./ [редкол.: Дичка І. А. та ін.]. — К. : Просвіта, 2022. — С. 86-93.Документ Відкритий доступ Математичне та програмне забезпечення системи купівлі / продажу електроенергії в рамках низьковольтних енергомереж(КПІ ім. Ігоря Сікорського, 2023) Бірук, Станіслав Володимирович; Чертов, Олег РомановичДисертацію виконано на 84 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 47 найменувань. У роботі наведено 32 рис. та 8 таблиць. Актуальність теми полягає в тому, що впровадження потужностей відновлюваної енергетики в повсякденне життя людини дозволить розподілити навантаження на централізовану мережу передачі електроенергії та зменшити частку використання електроенергії від теплових електростанцій, які негативно впливають на навколишнє середовище. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Метою дослідження є оптимізація процесу купівлі / продажу електроенергії з метою зменшення періоду повернення інвестицій, які були залучені при встановленні технічних засобів для генерації та збереження відновлюваної енергії. Для досягнення вказаної мети було розв’язано такі задачі: − розглянуто існуючі рішення управління нелінійними та складними системами, зокрема, навчання з підкріпленням, управління з передбаченням поведінки моделі; − розроблено компонентне та динамічне представлення низьковольтної енергомережі; − розроблено програмне забезпечення для мультиагентної системи, що здійснює купівлю / продаж електроенергії. Об’єктом дослідження є гібридна енергетична система, низьковольтна енергомережа та її складові, системи керування мікромережами: HOMER, HYBRID2 та RETScreen. Поняття арбітражу на ринку електроенергії, процеси виробництва, перетворення та зберігання енергії в межах гібридної системи. Підходи та методи управління нелінійними та складними системами: навчання з підкріпленням; нечітке логічне управління та управління з передбаченням поведінки моделі. Предмет дослідження: математичне та програмне забезпечення системи купівлі / продажу електроенергії, в основу яких покладені моделі та алгоритми навчання з підкріпленням, що здійснюють арбітраж виробництва та споживання електроенергії. Методи дослідження. Для розв’язання поставленої задачі використовувалися такі методи: методи машинного навчання, навчання з підкріпленням, управління з передбаченням поведінки моделі, моделювання, проектування систем Data Science, методи теорії алгоритмів та програмування, методи аналізу даних та математичної статистики. Наукова новизна одержаних результатів роботи. Вперше в рамках єдиної мультиагентної системи прийняття рішень з купівлі/продажу електроенергії були поєднані симулювання роботи накопичувача електроенергії через модель Дойл-Фуллер-Ньюмана і обробка реальних даних про сонячне випромінення, метеорологічні показники, споживання електроенергії та її вартість, що дозволяє приймати обґрунтовані рішення з планування роботи мікромережі для зменшення рахунків за електроенергію. Практичне значення одержаних результатів. Завдяки запропонованому математичному і програмному представленні системи купівлі / продажу електроенергії можна зменшити рахунок за електроенергію. Додатково з’являється можливість дослідити вплив постійного розрядження та зарядження накопичувача електроенергії на термін його служби. Апробація результатів дисертації. Основні положення та результати роботи представлено та опубліковано на конференції ПМК 2022 (Прикладна Математика та Комп’ютинг). Публікації. Результати дисертації викладено у науковій праці: тези «Математичне та програмне забезпечення системи купівлі / продажу електроенергії потужностей відновлюваної енергетики» на XV конференції молодих вчених «Прикладна математика та комп’ютинг - ПМК’2022»Документ Відкритий доступ Математичне та програмне забезпечення системи оцінювання та аналізу рівня депресії в суспільстві(КПІ ім. Ігоря Сікорського, 2023) Питайло, Ірина Юріївна; Маслянко, Павло ПавловичДисертацію виконано на 85 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 33 найменувань. У роботі наведено 33 рисунки та 9 таблиць. Актуальність теми. Депресія є одним із найпоширеніших захворювань у світі, яке впливає на якість життя людини і може переходити у хронічну форму. Багато людей ігнорують симптоми депресії і довго не можуть з неї вийти. Тому актуальним є дослідження рівня депресії усього суспільства, визначення основних компонентів депресії для боротьби з нею. Оскільки депресія діагностується індивідуально у лікаря, то для аналізу рівня депресії усього суспільства можна використати дописи у соціальних мережах, які є у відкритому доступі і які можуть бути прив’язані до дати, місцевості, статі людини. Розробка такої модель системи оцінювання рівня депресії в суспільстві може стати аналітичним інструментом для боротьби з депресією. Мета і задачі дослідження. Метою дисертаційної роботи є розробка математичного і програмного забезпечення системи аналізу рівня депресії суспільства для боротьби з депресією. Об’єктом дослідження є депресія, види депресії, лінгвістичні маркери депресії, статистичний аналіз текстів. Шкала оцінювання депресії, визначення рівня депресії на основі тексту, обробка природньої мови, математичне представлення тексту, методи класифікації, методи кластеризації, визначення тематики тексту. Лінгвістичний аналіз тексту. Метод опорних векторів, випадковий ліст, метод к-найближчих сусідів, ДБСКАН, нейронні мережі, рекурентні нейронні мережи, трансформери. Методи зменшення розмірності даних, метод головних компонент. Метрики для оцінювання роботи алгоритмів. Точність (accuracy), чутливість (sensitivity), специфічність (specificity), повнота (recall), коефіцієнт чутливості Метьюса (MCC). Предметом дослідження є математичне та програмне забезпечення системи аналізу та оцінювання депресії на основі текстових даних, визначення тематики тексту і подальша кластеризація таких текстів за рівнем депресії та тематикою, на основі машинного навчання. Методи дослідження. Методи векторного представлення тексту, методи класифікації, методи тематичного моделювання, методи кластеризації. Наукова новизна одержаних результатів. Вперше запропоновано модель, яка робить оцінку депресивності суспільства не лише у розрізі наявності депресії, а у розрізі рівня депресії та тематики депресивних текстів. Практична цінність одержаних результатів. На основі запропонованої моделі системи для оцінювання та аналізу рівня депресії в суспільстві зроблено застосунок, який дозволяє робити моніторинг рівня депресії в суспільстві. Апробація результатів дисертації. Основні положення й результати роботи представлено та опубліковано на конференції ПМК 2022. Публікації. - Маслянко П. П. та Питайло І. Ю. (2022). Математичне та програмне забезпечення системи оцінювання та аналізу рівня депресії в суспільстві. ПМК-2022.Документ Відкритий доступ Математичне та програмне забезпечення системи прогнозування вартості фінансових активів компанії(КПІ ім. Ігоря Сікорського, 2023) Агафонов, Дмитро Сергійович; Сирота, Сергій ВікторовичДисертацію виконано на 106 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 64 найменувань. У роботі наведено 19 рисунків та 2 таблиці. Актуальність теми. Прогнозування вартості цінних паперів є надзвичайно важливим завданням для інвесторів і фінансових установ для прийняття обґрунтованих інвестиційних рішень, ефективного управлінні ризиками та загальної ефективності портфеля. Поєднання технічного аналізу активів ансамблювання моделей машинного та глибокого навчання, аналізу настроїв фінансових новин за допомогою мовних моделей має великий потенціал для підвищення точності та надійності прогнозів цін на акції. Технічний аналіз активів передбачає використання статистичних методів для аналізу історичних даних про ціни та обсяги для виявлення тенденцій і закономірностей на фондовому ринку. Цей метод десятиліттями використовувався трейдерами та інвесторами для прийняття інвестиційних рішень. Технічний аналіз можна автоматизувати та застосувати до великих наборів даних, дозволяючи робити більш точні та надійні прогнози. Методи глибокого навчання можуть вивчати складні взаємозв’язки між різними ринковими факторами, що дає точніші прогнози. В такі моделі можуть бути включені останні ринкові новини, економічні показники та інші відповідні фактори, щоб надати більш тонку та детальну інформацію. Ансамблювання моделей передбачає поєднання кількох моделей для підвищення точності та надійності прогнозів. Аналіз настроїв фінансових новин передбачає використання методів обробки природної мови для аналізу новинних статей і соціальних мереж, щоб визначити настрої ринку щодо певної акції чи компанії. Цей метод може надати додаткову інформацію про ринкові тенденції та настрої інвесторів, що призводить до більш точних прогнозів. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Метою дисертаційної роботи є розробка математичного та програмного забезпечення для покращення прогнозу вартості фінансових активів компанії (порівняно з традиційними методами прогнозування часових рядів) із застосуванням семантичного аналізу тексту, автоенкодерів, ансамблю моделей, генеративних змагальних мереж GAN з метою підвищення конкурентоспроможності компанії на ринку, покращення оптимізації та управління її ресурсами, забезпечення інвесторів та клієнтів фінансовим прогнозом. Для досягнення вказаної мети було розв’язано такі задачі: − Збір та аналіз необхідних для навчання моделей даних; − Тренування різних моделей машинного навчання, їх ансамблювання; − Розробка інтерфейсу та забезпечення роботи програми в реальному часі. Об’єктом дослідження є система прогнозування вартості фінансових показників компанії з використанням генеративних змагальних мереж GAN та навчання з підкріпленням RL. Методи технічного аналізу для прогнозування ймовірної зміни цін. Нейронні мережі для роботи з текстом spacy, nltk, BERT та finBERT. Алгоритми пониження розмірності t-SNE, UMAP, Factor Analysis, Feature Selection methods, Autoencoders. Методи прогнозування часових рядів багатовимірна лінійна регресія, ARIMA, марківська модель, fast-forward NN, RNN LSTM. Методи ансамблювання базових моделей bagging, stacking, boosting. Генеративні змагальні мережі GAN. Існуючі комерційні програмні рішення: StocksNeural, Stocksight, Deep Convolution Stock Technical Analysis. Предметом дослідження є техніки ансамблювання моделей машинного навчання, вплив на вартість фінансових активів компанії таких показників, як корельовані активи – показники залежних, схожих за економічною діяльністю або конкуруючих компаній; біржеіві товари – енергетична сировина, кольорові та дорогоцінні метали, промислова сировина тощо; курси валют; фондові індекси; кількість запитів в пошуковій системі; фінансові новини. Можливості технічного аналізу для прогнозування ймовірних змін вартості фінансових показників. Створення інформативних високорівневих ознак ззастосуванням t-SNE, UMAP, Feature Selection methods, Autoencoders. Порівняльний аналіз базових моделей прогнозування, об’єднання їх в ансамбль методами bagging, stacking, boosting. Можливість застосування генеративної змагальної мережі GAN, підбор моделей для генератора та дискримінатора. Методи дослідження. Для розв’язання поставленої задачі використовувалися такі методи: методи машинного навчання з учителем, навчання з підкріпленням, генеративні змагальні мережі, методи зменшення розмірності та вибору важливих ознак. Наукова новизна одержаних результатів полягає в потенціалі для покращення процесу прийняття інвестиційних рішень та управління ризиками на фінансових ринках за допомогою програмного забезпечення, створення якого є метою даної магістерської дисертації, що здатне інтегрувати набір методологій та алгоритмів в єдину систему, що дозволяє надавати більш точні та надійні прогнози. Програмне забезпечення здатне поєднувати велику кількість ознак (отриманих шляхом дата майнингу, інженирінгу ознак, технічного аналізу), ансамблі моделей машинного та глибокого навчання, мовну модель визначення емоційної забарвленості фінансових текстів для надання більш точних та надійних прогнозів порівняно з наявними існуючими рішеннями. Тому підхід до прогнозування фінансової інформації, який полягає в використанні якомога більшої кількості ознак для навчання моделі і представлений в даній дипломній роботі є найбільш вдалим та актуальним. Практичне значення одержаних результатів. Реалізовану систему можна застосовувати для проведення аналітики та прогнозування економічного стану окремої компанії; під час торгів на ринку акцій в режимі реального часу. Апробація результатів дисертації. Деякі положення й результати роботи дисертації доповідались та опубліковані у матеріалах XV наукової конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг - ПМК-2022» ( Київ 16-17 листопада 2022 року). Публікації. Результати дослідження, викладені в одному з розділів дисертації, представлені в науковій праці: тези «Порівняльний аналіз підходів і методів оцінювання емоційного забарвлення фінансової інформації про поточний стан підприємства» на XV конференції ім. магістрантів та аспірантів «Прикладна математика та обчислювальна техніка – ПМК-2022».Документ Відкритий доступ Математичне та програмне забезпечення системи прогнозування захворювання людини на діабет II типу(КПІ ім. Ігоря Сікорського, 2023) Городецький, Дмитро Сергійович; Бай, Юлія ПетрівнаДисертацію виконано на 110 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 27 найменувань. У роботі наведено 36 рисунків та 11 таблиць. Актуальність теми. Сьогодні діабет є однією з найбільш поширених хвороб у світі та в Україні. Кількість хворих на діабет швидко зростає з кожним роком. Ця хвороба має багато важких ускладнень, які можуть загрожувати життю людини, зокрема інсульт, інфаркт, ретинопатія, навіть ампутації кінцівок. Лікування хворих на діабет, втрата працездатних людей, утримання інвалідів завдають також значної шкоди економіці країни. Загальні втрати економіки можуть сягати десятків мільярдів гривень або приблизно 1-2.5% ВВП. Окрім того, значна кількість хворих на діабет є не діагностованими, що збільшує ймовірність виникнення ускладнень. Саме тому дуже актуальним є розроблення та використання оптимальних методів прогнозування захворювання на діабет. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Метою дисертаційної роботи є розробка математичного та програмного забезпечення системи прогнозування ризику захворювання на діабет, що допоможе виявити групи людей з ризиком виникнення діабету, а також оптимізація та підвищення точності класифікації вже існуючих методів. Для досягнення вказаної мети було розв’язано такі задачі: − проаналізувати існуючі методи прогнозування захворювання на діабет; − розробити одиночні моделі машинного навчання для прогнозування захворювання на діабет; − проаналізувати та застосувати до розроблених моделей існуючі оптимізаційні методи; − розробити ансамблеву модель з використанням оптимізованих одиночних моделей; − провести експериментальні дослідження з використанням клінічних даних. Об’єктом дослідження є методи прогнозування захворювання на діабет. Предметом дослідження є застосування оптимізаційних методів до розроблених моделей, застосування ансамблів моделей. Методи дослідження. Для розв’язання поставленої задачі використовувалися такі методи: методи машинного навчання (для прогнозування захворювання на діабет); методи оптимізації (для оптимізації розроблених методів); методи теорії ймовірності та математичної статистики (для проведення експериментів та оцінки точності моделей) Наукова новизна одержаних результатів полягає в тому, що запропоновано використання ансамблю оптимізованих моделей для задачі прогнозування захворювання на діабет II типу. Практичне значення одержаних результатів полягає в тому, що розроблені моделі мають значущі результати і можуть бути використані в якості допоміжного застосунку при реальній діагностиці. Апробація результатів дисертації. Основні положення й результати роботи представлено на XV науково-практичній конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг – ПМК-2022» (Київ, 16-18 листопада 2022 р.) та опубліковані у збірнику тез за результатами конференції. Публікації. Результати дисертації викладено у науковій праці: тези «Математичне та програмне забезпечення системи прогнозування ризиків виникнення діабету» на XV конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг – ПМК-2022».Документ Відкритий доступ Математичне та програмне забезпечення системи розпізнавання військової техніки за допомогою супутникових зображень(КПІ ім. Ігоря Сікорського, 2023) Давиденко, Микола Андрійович; Третиник, Віолета ВікентіївнаДисертацію виконано на 92 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 23 найменувань. У роботі наведено 30 рисунки та 3 таблиці. Актуальність теми. Після 24 лютого 2022 року життя кожного українця назавжди змінилося від російського вторгнення та повномасштабної війни. Тож у сучасних життєвих реаліях війна зайняла окреме місце. Щоб підвищити оборонну спроможність важливо мати танки, артилерію та літаки, але щоб підвищити якість всього потрібна допомога математики та машинного навчання. На заході вже давно розробляються автоматичні системи прийняття рішень на основі штучного інтелекту, а дрони навчають автоматично знаходити цілі, і це далеко не повний список. Тож мета цієї роботи розробити інструмент для підвищення оборонної спроможності нашої країни. Щоб стежити та приймати відповідні рішення можна використовувати багато людських та фінансових ресурсів, що не є оптимально. Але є другий варіант, завдяки прогресу у супутниковій фотозйомці та нейронних мережах, це можна зробити повністю автоматизовано. В наш час стало зрозуміло що незважаючи на 21 століття військові конфлікти нікуди не зникли, тому є сенс створювати оборонний потенціал. Важливу роль у сучасній війні є розвідка, бо якщо є інформація про розташування ворога, то можна зробити контрдії які можуть кардинально змінити хід війни. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Розробка математичного та програмного забезпечення системи розпізнавання військової техніки за допомогою супутникових зображень на основі нейромережевої моделі для інтеграції з сайтами. Для розширення функціональних можливостей і адаптації системи до використання людьми без профільної освіти. Програма має бути інтегрована з сайтом, додатком або впроваджена в робочий процес. Об’єктом дослідження є методи та моделі розпізнавання об’єктів за супутниковими знімками на основі методів та моделей нейронних мереж. Моделі підвищення якості зображення, апскейлінг. Різні архітектури нейронних мереж: згорткові нейронні мережі, глибока згорткова нейронна мережа, U-Net, Залишкова нейронна мережа. Методи оптимізації та гіперпараметри нейронної мережі. Предметом дослідження є математичне та програмне забезпечення системи розпізнавання військових об’єктів за супутниковими знімками на основі нейромережевої моделі. Застосування нейронних мереж на етапі попереднього тренування для розпізнавання морських об’єктів за супутниковими знімками, порівняльний аналіз методів оптимізації, що використовуються при навчанні нейронних мереж. Методи дослідження. Для розв’язання поставленої задачі використовувались такі методи: методи машинного навчання (для розробки моделі нейронної мережі); методи оптимізації (для пошуку найкращого налаштування системи); методи обробки даних (для попередньої підготовки вхідних даних); методи теорії алгоритмів та програмування (для програмної реалізації розроблених алгоритмів). Наукова новизна одержаних результатів включає в себе такі пункти: - Комбінація використання навчених нейронних мереж з відкритим кодом для підвищення якості (апскейлінг) супутникових зображень, перед застосуванням основної згорткової нейронної мережі для розпізнавання об’єктів на фото. - Запропоновано використання згорткових нейронних мереж для розпізнавання військової техніки в комбінації сучасних комерційних супутників з синтезованою апертурою. Практичне значення одержаних результатів. Полягає в тому, що розроблена система для розпізнавання військової техніки за супутниковими знімками при подальшій модифікації може використовуватися військовими Збройними силами України. Апробація результатів дисертації. Основні положення й результати роботи представлено на конференції ПМК 2022 (Прикладна математика та комп’ютинг). Публікації. Результати дисертації викладено в одній науковій праці: - Третиник В. В., Давиденко М.А. (2022) Попереднє покращення якості зображення для підвищення точності розпізнавання об'єктів. ПМК 2022. С. 169-173;Документ Відкритий доступ Математичне та програмне забезпечення системи розпізнавання емоцій за аудіозаписами(КПІ ім. Ігоря Сікорського, 2023) Коваленко, Олександра Петрівна; Третиник, Віолета ВікентіївнаДисертацію виконано на 81 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 22 найменувань. У роботі наведено 40 рисунків та 2 таблиці. Актуальність теми. Технології сучасності стрімко розвиваються. Сьогодні потужність обчислювальної техніки сильно виросла порівняно з попереднім століттям. Розвиток машинного навчання припадає ще на 60-ті роки минулого століття і швидкість розвитку цієї галузі зростає з кожним роком в геометричній прогресії. Протягом останніх двох десятиліть ця галузь є однією із провідних у комп’ютерних науках. Задачі розпізнавання вирішені використанням нейронних мереж є унікальними. Використання нейронних мереж у багатьох сферах стрімко покращує прогрес. Дана робота, про розпізнавання емоцій людини за аудіозаписами спрямована на вирішення проблем галузях: військовій, розважальній, освітній та медичній. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Метою дисертаційної роботи є розробка математичного та програмного забезпечення системи розпізнавання емоцій за аудіозаписами. Для досягнення цієї мети необхідно вирішити наступні задачі: - дослідити методи навчання нейронних мереж; - розглянути і проаналізувати архітектури та принципи організації нейронних мереж та методів вирішення задач класифікації; - способи оптимізації параметрів згорткових мереж; - запропонувати структуру системи класифікації аудіозаписів; - розробити модель програмного забезпечення з запропонованою структурою; - провести експериментальне дослідження характеристик системи. Об’єктом дослідження є способи організації засобів машинного навчання для розпізнавання емоцій за аудіозаписами. Теоретичні інструменти: - методи і алгоритми реалізації архітектур нейронних мереж: нейронні мережі, аналіз та класифікація даних за заданими параметрами; обрання ознак; - методи оптимізації гіперпараметрів: гіперпараметри, оптимізація, пошук архітектури нейронної мережі, автоналаштування; обрання моделі; Існуючі засоби: класи, ознаки, характеристики, область застосування, вартість володіння. Предмет дослідження: Математичне та програмне забезпечення системи розпізнавання емоцій за аудіозаписами на основі нейромережевої моделі. Застосування нейронних мереж на етапі попереднього тренування для розпізнавання емоцій за аудіозаписами, порівняльний аналіз методів оптимізації, що використовуються при навчанні нейронних мереж. Методи дослідження. Для розв’язання поставленої задачі використовувались такі методи: методи машинного навчання (для розробки моделі нейронної мережі); методи оптимізації (для пошуку найкращого налаштування системи); методи обробки даних (для попередньої підготовки вихідних даних); методи теорії алгоритмів та програмування (для програмної реалізації розроблених алгоритмів). Наукова новизна одержаних результатів складається з таких положень: 1) вперше застосовано та поєднано системну інженерію, включено методи та моделі Data Science, які використовуються для реалізації системи розпізнавання емоцій людини за аудіозаписами; 2) запропоновано використання інтегрованої моделі класифікації емоцій за аудіозаписами на основі згорткових нейронних мереж з автоматизованим підбором гіперпараметрів. Практичне значення одержаних результатів. Полягає в тому, що розроблена система розпізнавання емоцій за аудіозаписами на основі згорткової нейронної мережі, яка може використовуватись для аналізу розмови та емоційного стану людини, що в подальшому можна використовувати в рекомендаційних системах, військовій справі і тд. Апробація результатів дисертації. Основні положення й результати роботи дисертації доповідались та опубліковані у матеріалах XV наукової конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг - ПМК-2022» ( Київ 16-17 листопада 2022 року). Публікації. Результати дисертації викладено в науковій праці: тези «Автоматизація підбору гіперпарметрів lstm для задачі розпізнавання емоцій за аудіозаписами» на XV конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг - ПМК-2022»Документ Відкритий доступ Математичне та програмне забезпечення системи розпізнавання марки автомобілів на фотографіях в умовах обмеженого ракурсу(КПІ ім. Ігоря Сікорського, 2023) Гуро, Дмитро Анатолійович; Андрусенко, Олена МиколаївнаДисертацію виконано на 95 аркушах, вона містить 3 додатки та перелік посилань на використані джерела з 37 найменувань. У роботі наведено 36 рисунки та 2 таблиці. Актуальність теми. На сьогоднішній день у світі існує величезна кількість транспортних засобів і наземний транспорт, очевидно, є основним способом пересування людства. З цього випливає, що контроль потоку транспортних засобів є дуже важливою задачею, так як завжди є необхідним в реальному часу відслідковувати порушення правил дорожнього руху, фіксувати переміщення вантажівок, знаходити автомобілі по системі камер тощо. Більшість систем, що встановлюються на дорогах громадського використання, навчені для розпізнавання авто спереду та ззаду, так як цього достатньо для більшості потреб систем контролю. Проте, не завжди є можливість встановити камеру, на яку покладено роботу зйомки трафіку, таким чином, тому є необхідність розробити систему, що може розпізнавати автомобілі незалежно від ракурсу та повноти зображення авбомобілю. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Метою дисертаційної роботи є створення системи здатної швидко та ефективно класифікувати автомобілі на цифрових зображеннях в умовах обмеженого ракурсу. Для досягнення мети було розв’язано такі задачі: - провести аналіз предметної області - зібрати або знайти необхідний - розробити алгоритмм розпізнавання моделі автомобіля на фотографії - розробити демонстраційну систему та інтегрувати алгоритм неї Об’єктом дослідження є методи роботи із зображеннями та їх класифікації. Предметом дослідження є застосування методів машинного навчання для заадчі класифікації зображень. Методи дослідження. Основним методом, що був використаний в дисертації для класифікації класів автомобілів є метод машинного навчання – згорткова нейронна мережа. Наукова новизна одержаних результатів роботи. Використано архітектуру згорткової нейронної мережі, яка за показниками точності та повноти не поступається відомим аналогам, але потребує менше часу на її навчання, використовує меншу кількість параметрів, швидше класифікує цифрові зображення і потребує менше ресурсів для розгортання і використання. Також система, в яку інтегрована мережа, робить акцент на зображеннях автомобілів в неповних ракурсах. Практичне значення роботи полягає у створенні власного модулю для класифікації цифрових зображень із використанням нейронних мереж. За допомоги цього модуля можна оптимізувати системи, де існує необхідність розпізнавання марки та моделі автомобіля, в ситуаціях, коли неможливо отримати повне зображення авто.Документ Відкритий доступ Система для семантичного пошуку музики та формування рекомендацій з використанням нечіткої логіки(КПІ ім. Ігоря Сікорського, 2023) Пастернак, Марина Олександрівна; Вовк, Лілія БорисівнаДисертацію виконано на 87 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 24 найменувань. У роботі наведено 31 рисунки та 7 таблиць. Актуальність теми. Зростання кількості музичних композицій та постійне поповнення ринку музичних платформ та пошукових систем створює необхідність у більш ефективних інструментах для пошуку та рекомендації музики. Крім того, на сьогоднішній день відбувається збільшення кількості користувачів музичних платформ, які хочуть знайти нові композиції, що відповідають їхнім смакам та настрою. У зв'язку з цим, ефективна система для обробки семантичних описів запитів може допомогти користувачам знайти більш точні та персоналізовані рекомендації музики. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Основна мета дослідження полягає у розробці та оцінці ефективності такої системи з метою поліпшення пошукових можливостей та рекомендацій користувачам музичних платформ та пошукових систем. Дослідження передбачає аналіз існуючих підходів до обробки семантичних описів запитів та теоретичних аспектів нечіткої логіки, а також розробку та тестування прототипу системи для оцінки її ефективності. Для досягнення вказаної мети було розв’язано такі задачі: - аналіз літератури та пошук існуючих рішень в галузі музичної рекомендації та обробки запитів користувачів. - розробка алгоритмів для обробки семантичних описів запитів користувачів музики з використанням нечіткої логіки. - розробка системи для збору та обробки даних про музичні композиції та користувачів. - розробка моделей машинного навчання для персоналізованих рекомендацій музики користувачам. - тестування та оцінка ефективності системи на реальних даних та порівняння її з існуючими рішеннями в галузі музичної рекомендації. - підготовка документації та розробка інтерфейсу користувача для зручного використання системи. Об’єктом дослідження. Поняття нечіткої логіки: аналіз тексту, вимірювання семантичної подібності, нечітка логіка. Нечітка логіка — це метод міркування, який нагадує людський спосіб формування думки. Цей підхід схожий на те, як люди приймають рішення. І це включає всі проміжні можливості між «так» і «ні». Пошук музичної інформації на основі вмісту спрямований на визначення пошуку музики в термінах семантичних дескрипторів. Замість того, щоб вказувати ім’я композитора чи назву пісні, семантичний опис дозволить визначити музичний вміст за допомогою таких дескрипторів, як «веселі», «сумні», «динамічні» та «гармонійні». Вимірювання семантичної подібності спрямоване на визначення подібності між двома текстовими виразами, які використовують різні лексикографічні засоби для представлення того самого реального об’єкта чи ідеї. Предметом дослідження. Cистема для обробки семантичних описів запитів користувачів пошуку музики з використанням нечіткої логіки; Методи дослідження. Для розв’язання поставленої задачі використовувалися такі методи: методи нечіткої логіки; методи теорії алгоритмів та програмування (для програмної реалізації розроблених алгоритмів); методи теорії ймовірності та математичної статистики (для обробки результатів). Наукова новизна одержаних результатів. Полягає у дослідженні та розробці такої системи, яка може мати великий практичний внесок у розвиток сучасних музичних платформ та пошукових систем. Зокрема, вона може допомогти користувачам знайти музику, яка відповідає їхнім потребам та уподобанням, а також покращити якість пошуку та рекомендацій. Апробація результатів дисертації. Основні положення та результати роботи представлено на коференції 2023 року XXV Всеукраїнська науково-практична конференція "Молодь, освіта, наука, культура і національна самосвідомість в умовах європейської інтеграції". Публікації. Вовк Л. Б., Пастернак М. О. Система для семантичного пошуку музики та формування рекомендацій з використанням нечіткої логіки XXV Всеукраїнська науково-практична конференція "Молодь, освіта, наука, культура і національна самосвідомість в умовах європейської інтеграції" Практичне значення роботи. Отримані результати дослідження можуть мати значний практичний внесок у розвиток сучасних музичних платформ та пошукових систем. На основі розробленої системи для обробки семантичних описів запитів користувачів пошуку музики з використанням нечіткої логіки можуть бути розроблені нові алгоритми та підходи до визначення схожості музичних композицій та відбору рекомендацій.