Innovative Biosystems and Bioengineering: international scientific e-journal, Vol. 7, No. 4
Постійне посилання зібрання
Переглянути
Перегляд Innovative Biosystems and Bioengineering: international scientific e-journal, Vol. 7, No. 4 за Ключові слова "molecular docking"
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Antibacterial activity of 1-dodecylpyridinium tetrafluoroborate and its inclusion complex with sulfobutyl ether-B-cyclodextrin against mdr acinetobacter baumannii strains(Igor Sikorsky Kyiv Polytechnic Institute, 2023) Rogalsky, S.; Hodyna, D.; Semenyuta, I.; Frasinyuk, M.; Tarasyuk, O.; Riabov, S.; Kobrina, L.; Tetko, I.; Metelytsia, L.Background.The bacterial pathogen Acinetobacter baumanniiis one of the most dangerous multi-drug-resistant (MDR) microorganisms, which causes numerous bacterial infections. Nowadays, there is an urgent need for new broad-spectrum antibacterial agents with specific molecular mechanisms of action. Long-chain 1-alkylpyridinium salts are efficient cationic biocides which can inhibit enzymes involved in the biosynthesis of bacterial fatty acids.Incorporating these compounds into inclusion complexes with cyclic oligosaccharide B-cyclodextrin can reduce their relatively high acute toxicity.Objective. The aim of this research was to develop new anti-A.baumanniiagents based on hydrophobic 1-alkylpyridinium salt and its inclusion complex with sulfobutyl ether B-cyclodextrin (SBECD). Methods. Hydrophobiccationic biocide 1-dodecylpyridinium tetrafluoroborate (PyrC12-BF4) and its inclu-sion complex with SBECD have been synthesized. The structure of the SBECD/PyrC12-BF4complex was characterized by 1H Nuclear Magnetic Resonance spectroscopy, as well as UV spectroscopy. In vitroanti-bacterial activity of the synthesized compounds was estimated against MDR clinical isolates of A. baumanniiusing standard disc diffusion method. Acute toxicity studies were performed on Daphnia magnamodel hydro-biont.Molecular docking was performed using the crystal structure of the A.baumannii3-oxoacyl-[acyl-carrier-protein] reductase(FabG).Документ Відкритий доступ In silico analysis of anti-cervical cancer drug off-target effects on diverse protein isoforms for enhanced therapeutic strategies(Igor Sikorsky Kyiv Polytechnic Institute, 2023) Azhar, Iqbal; Faisal, Ali; Shanza, Choudhary; Adiba, Qayyum; Fiza, Arshad; Sara, Ashraf; Moawaz, Aziz; Asad, Ullah Shakil; Momina, Hussain; Muhammad, Sajid; Sheikh, Arslan SehgalBackground. Cervical cancer is a serious medical condition that affects hundreds of thousands of individuals worldwide annually. The selection and analysis of suitable gene targets in the early stages of drug design are crucial for combating this disease. However, overlooking the presence of various protein isoforms may result in unwanted therapeutic or harmful side effects. Objective. This study aimed to provide a computational analysis of the interactions between cervical cancer drugs and their targets, influenced by alternative splicing. Methods. Using open-access databases, we targeted 45 FDA-approved cervical cancer drugs that target various genes having more than two distinct protein-coding isoforms. To check the conservation of binding pocket in isoforms of the genes, multiple sequence analysis was performed. To better understand the associations between proteins and FDA-approved drugs at the isoform level, we conducted molecular docking analysis. Results. The study reveals that many drugs lack potential targets at the isoform level. Further examination of various isoforms of the same gene revealed distinct ligand-binding pocket configurations, including differences in size, shape, electrostatic characteristics, and structure. Conclusions. This study highlights the potential risks of focusing solely on the canonical isoform, and ignoring the impact of cervical cancer drugs on- and off-target effects at the isoform level. These findings emphasize the importance of considering interactions between drugs and their targets at the isoform level to promote effective treatment outcomes.