Multi-step prediction in linearized latent state spaces for representation learning

Вантажиться...
Ескіз

Дата

2022

Автори

Науковий керівник

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

In this paper, we derive a novel method as a generalization over LCEs such as E2C. The method develops the idea of learning a locally linear state space by adding a multi-step prediction, thus allowing for more explicit control over the curvature. We show that the method outperforms E2C without drastic model changes which come with other works, such as PCC and P3C. We discuss the relation between E2C and the presented method and derive update equations. We provide empirical evidence, which suggests that by considering the multi-step prediction, our method – ms-E2C – allows learning much better latent state spaces in terms of curvature and next state predictability. Finally, we also discuss certain stability challenges we encounter with multi-step predictions and how to mitigate them.

Опис

Ключові слова

representation learning, learning controllable embedding, reinforcement learning, latent state space, навчання репрезентацій, навчання керованих просторів, навчання з підкріпленням, латентний простір станів

Бібліографічний опис

Tytarenko, A. Multi-step prediction in linearized latent state spaces for representation learning / A. Tytarenko // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2022. – № 3. – С. 139-148. – Бібліогр.: 18 назв.