Огляд методів машинного навчання для класифікації великих обсягів супутникових даних
Loading...
Date
2018
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
КПІ ім. Ігоря Сікорського
Abstract
З появою у вільному доступі великих обсягів супутникових даних дедалі більшої актуальності набуває розвиток методів машинного навчання на підставі геопросторових даних, зокрема, супутникових. Розглянуто основні методи машинного навчання і проаналізовано особливості та результати їх застосування до класифікації земного покриву за супутниковими даними високого розрізнення. Особливу увагу приділено глибинним архітектурам, зокрема згортковим нейронним мережам, що натепер є найбільш потужним і точним методом для розпізнавання візуальних образів. Визначено основні переваги методів глибинного навчання над традиційними підходами до задач класифікації, що використовувались протягом останніх десятиліть і ґрунтувались на експертних знаннях для виокремлення ознак із вхідних даних.
Description
Keywords
машинне навчання, глибинне навчання, згорткова нейронна мережа, класифікація великих обсягів даних, machine learning, deep learning, convolutional neural network, big data classification
Citation
Лавренюк, М. Огляд методів машинного навчання для класифікації великих обсягів супутникових даних / М. С. Лавренюк, О. М. Новіков // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2018. – № 1. – С. 52-71. – Бібліогр.: 74 назви.