Development of the performance prediction algorithms for cloud services
Вантажиться...
Дата
2018
Науковий керівник
Назва журналу
Номер ISSN
Назва тому
Видавець
КПІ ім. Ігоря Сікорського
Анотація
Main stages of data center service performance prediction were discussed, specifically data monitoring and gathering, calculation and prediction of key indexes and performance index prediction. It was proposed to build data center service performance prediction algorithm based on an analysis of the service transactions index, service resource occupancy index and service performance index. Prediction of the indexes is based on chaotic time series analysis that was used to estimate service transactions index time series trend, the radar chart method to calculate the service resource occupancy index value and weighted average method to calculate service performance index. For performance prediction, it is proposed to use a fuzzy judgment matrix with the service transactions index and service resource occupancy index as input values. It was taken into consideration that service transactions index is usually represented by nonlinear time series and thus the index time series parameters had to be predicted by chaos theory and for the calculation of this index, the estimation procedure of Lyapunov exponent value can be used. The radar chart demonstrates service resource occupancy index estimation of shared storage, mobile storage, memory, computational capability and network bandwidth. The prediction technique was based on the fuzzy nearness category that use input values of transactions index and dynamic changes of the service resource occupancy index.
Опис
Ключові слова
data center, service transactions index, service resource occupancy index, service performance index, fuzzy judgment matrix, Lyapunov exponent, radar chart
Бібліографічний опис
Development of the performance prediction algorithms for cloud services / D. O. Zuev, A. V. Kropachev, A. Ye. Usov, R. A. Gorshunov // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2018. – № 2. – С. 7-14. – Бібліогр.: 9 назв.