Multi-factor forecasting of statistical trends for Data Science problems

Вантажиться...
Ескіз

Дата

2024

Науковий керівник

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

The article deals with the processes of multi-factor forecasting of statistical trends for Data Science problems. Most of the classic approaches to data processing consist of studying the consequences of phenomena rather than the factors of their appearance. At the same time, the factors affecting the behavior of the investigated process are assumed to be random and are not investigated. The article discusses the approach to forecasting the parameters of the trend of statistical time series, which consists of the study of factors that lead to changes in the dynamics of the studied process. This approach potentially has better indicators of adequacy, accuracy, and efficiency in obtaining final solutions than classical approaches. The implementation of this approach is shown using an example of the analysis of exchange rate changes. The obtained results show the practicality of considering multifactoriality in forecasting tasks.

Опис

Ключові слова

Data Science, multi-factor forecasting, statistical trends, currency rate forecasting, багатофакторне прогнозування, статистичні тренди, прогнозування курсу валют

Бібліографічний опис

Multi-factor forecasting of statistical trends for Data Science problems / Pysarchuk O., Andreieva T., Grinenko O., Baran D. // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2024. – № 1. – С. 21-34. – Бібліогр.: 16 назв.