Алгоритм глибинного аналізу даних для задачі класифікації на основі штучного бджолиного рою
dc.contributor.advisor | Зорін, Юрій | |
dc.contributor.author | Абдураімов, Таір Заірович | |
dc.date.accessioned | 2020-12-28T10:32:57Z | |
dc.date.available | 2020-12-28T10:32:57Z | |
dc.date.issued | 2020-12 | |
dc.description.abstracten | Actuality of theme. As the size of digital information grows exponentially, large amounts of raw data need to be extracted. To date, there are several methods to customize and process data according to our needs. The most common method is to use Data Mining. Data Mining is used to extract implicit, valid and potentially useful knowledge from large amounts of raw data. The knowledge gained must be accurate, readable and easy to understand. In addition, the data mining process is also called the knowledge discovery process, which has been used in most new interdisciplinary fields, such as databases, artificial intelligence statistics, visualization, parallel computing, and other fields. One of the new and extremely powerful algorithms used in Data Mining is evolutionary algorithms and swarm-based approaches, such as the ant algorithm and particle swarm optimization. In this paper, it is proposed to use a fairly new idea of the swarm of bee swarm algorithm for data mining for a widespread classification problem. Purpose: to develop an algorithm for data mining for the classification problem based on the swarm of bee swarms, which exceeds other common classifiers in terms of accuracy of results and consistency. The object of research is the process of data mining for the classification problem. The subject of the study is the use of a swarm of bee swarms for data mining. Research methods. Methods of parametric research of heuristic algorithms, and also methods of the comparative analysis for algorithms of data mining are used. The scientific novelty of the work is as follows: 1. As a result of the analysis of existing solutions for the classification problem, it is decided to use such metaheuristics as the swarm of bee swarm. 2. The implementation of the bee algorithm for data mining is proposed. The practical value of the results obtained in this work is that the developed algorithm can be used as a classifier for data mining. In addition, the proposed adaptation of the bee algorithm can be considered as a useful and accurate solution to such an important problem as the problem of data classification. Approbation of work. The main provisions and results of the work were presented and discussed at the scientific conference of undergraduates and graduate students "Applied Mathematics and Computing" PMK-2019 (Kyiv, 2019), as well as at the scientific conference of undergraduates and graduate students "Applied Mathematics and Computing" PMK-2020 (Kyiv, 2020). Structure and scope of work. The master's dissertation consists of an introduction, four chapters, conclusions and appendices. The introduction provides a general description of the work, assesses the current state of the problem, substantiates the relevance of research, formulates the purpose and objectives of research, shows the scientific novelty of the results and the practical value of the work, provides information on testing and implementation. The first section discusses the data mining algorithms used for the classification problem. The possibility of using heuristic algorithms, namely the bee swarm algorithm for this problem, is substantiated. The second section discusses in detail the algorithm of the bee swarm and the principles of its operation, also describes the proposed method of its application for data mining, namely for the classification problem. The third section describes the developed algorithm and the software application in which it is implemented. In the fourth section the estimation of efficiency of the offered algorithm, on the basis of testing of algorithm, and also the comparative analysis between the developed algorithm and already different is resulted. The conclusions present the results of the master's dissertation. The work is performed on 89 sheets, contains a link to the list of used literature sources with 18 titles. The paper presents 38 figures and 2 appendices. | uk |
dc.description.abstractuk | Актуальність теми. Оскільки розмір цифрової інформації зростає в геометричній прогресії, потрібно витягувати великі обсяги необроблених даних. На сьогоднішній день існує кілька методів налаштування та обробки даних відповідно до наших потреб. Найбільш поширеним методом є використання інтелектуального аналізу даних (Data Mining). Data Mining застосовується для вилучення неявних, дійсних та потенційно корисних знань із великих обсягів необроблених даних. Видобуті знання повинні бути точними, читабельними та легкими для розуміння. Крім того, процес видобутку даних також називають процесом виявлення знань, який використовувався в більшості нових міждисциплінарних областей, таких як бази даних, статистика штучного інтелекту, візуалізація, паралельні обчислення та інші галузі. Одним із нових і надзвичайно потужних алгоритмів, що використовуються в Data Mining, є еволюційні алгоритми та підходи, що базуються на рії, такі як мурашиний алгоритм та оптимізація рою частинок. В даній роботі запропоновано використати для інтелектуального аналізу даних досить нову ідею алгоритма бджолиного рою для широко розповсюдженої задачі класифікації. Мета роботи: покращення результатів класифікації даних в сенсі в точності і сталості за допомогою алгоритму інтелектуального аналізу даних на основі алгоритму бджолиного рою. Об’єктом дослідження є процес інтелектуального аналізу даних для задачі класифікації. Предметом дослідження є використання алгоритму бджолиного рою для інтелектуального аналізу даних. Методи дослідження. Використовуються методи параметричного дослідження евристичних алгоритмів, а також методи порівняльного аналізу для алгоритмів інтелектуального аналізу даних. Наукова новизна одержаних результатів роботи полягає в тому, що після проведеного аналізу існуючих рішень, запропоновано використати алгоритм бджолиного рою для задачі класифікації, точність і сталість якого перевищує показники існуючих класифікаторів. Практичне значення одержаних результатів полягає в тому, що розроблений алгоритм показує кращі результати в сенсі точності і сталості в порівнянні з іншими алгоритмами інтелектуального аналізу даних. Тобто адаптація бджолиного алгоритму може розглядатися як корисне та точне рішення для такої важливої проблеми, як задача класифікації даних. Апробація роботи. Основні положення й результати роботи були представлені та обговорювались на науковій конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг» ПМК-2019 (Київ, 2019 р.), а також на науковій конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг» ПМК-2020 (Київ, 2020 р.). Структура та обсяг роботи. Магістерська дисертація складається з вступу, чотирьох розділів, висновків та додатків. У вступі надано загальну характеристику роботи, виконано оцінку сучасного стану проблеми, обґрунтовано актуальність напрямку досліджень, сформульовано мету і задачі досліджень, показано наукову новизну отриманих результатів і практичну цінність роботи, наведено відомості про апробацію результатів і їх впровадження. У першому розділі розглянуто алгоритми інтелектуального аналізу даних, які використовуються для задачі класифікації. Обґрунтовано можливість використання евристичних алгоритмів, а саме алгоритму бджолиного рою для цієї задачі. У другому розділі детально розглянуто алгоритм бджолиного рою та принципи його роботи, також описано запропоновану методику його застосування для інтелектуального аналізу даних, а саме для задачі класифікації. У третьому розділі описано розроблений алгоритм та програмний додаток, в якому він реалізований. У четвертому розділі приведена оцінка ефективності запропонованого алгоритм, на основі тестування алгоритму, а також порівняльного аналізу між розробленим алгоритмом та вже існуючими. У висновках представлені результати магістерської дисертації. Робота виконана на 81 аркуші, містить посилання на список використаних літературних джерел з 18 найменувань. У роботі наведено 38 рисунків та 5 додатків. | uk |
dc.format.page | 107 c. | uk |
dc.identifier.citation | Абдураімов, Т. З. Алгоритм глибинного аналізу даних для задачі класифікації на основі штучного бджолиного рою : магістерська дис. : 123 Комп’ютерна інженерія. Комп’ютерні системи та компоненти / Абдураімов Таір Заірович. – Київ, 2020. – 107 с. | uk |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/38328 | |
dc.language.iso | uk | uk |
dc.publisher | КПІ ім. Ігоря Сікорського | uk |
dc.publisher.place | Київ | uk |
dc.subject | data mining | uk |
dc.subject | класифікація | uk |
dc.subject | евристичні алгоритми | uk |
dc.subject | оптимізація рою частинок | uk |
dc.subject | мурашиний алгоритм | uk |
dc.subject | алгоритм бджолиного рою | uk |
dc.subject | data mining | uk |
dc.subject | classification | uk |
dc.subject | heuristic algorithms | uk |
dc.subject | particle swarm optimization | uk |
dc.subject | ant algorithm | uk |
dc.subject | bee swarm algorithm | uk |
dc.title | Алгоритм глибинного аналізу даних для задачі класифікації на основі штучного бджолиного рою | uk |
dc.type | Master Thesis | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Abduraimov_magistr.pdf
- Розмір:
- 3.01 MB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 9.16 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: