Засоби прогнозування фінансових показників банку з використанням нейронної мережі
Вантажиться...
Дата
2024
Автори
Науковий керівник
Назва журналу
Номер ISSN
Назва тому
Видавець
КПІ ім. Ігоря Сікорського
Анотація
Актуальність теми. В сучасному економічному середовищі значно зростає вагомість прогнозування, яке перетворюється на важливу складову процесу ухвалення рішень.
Основою прогнозування в економіці слугує економіко-математичне моделювання, що дозволяє виконувати аналіз очікуваних подій та варіантів розвитку ситуацій. Математичне моделювання використовує різні методи аналізу та підходи.
В економічному середовищі адаптивне моделювання займає дуже значну роль. Воно дозволяє більш точно відображати поточний стан економічних процесів, враховуючи їх динамічну природу і постійну еволюцію. Адаптивні моделі, на відміну від традиційних, можуть ефективно враховувати зміни в економічній системі, що є критично важливим в умовах реформ.
В цілому, важливість і складність прогнозування в сучасній економіці, в тому числі і в діяльності банків, зумовлює необхідність подальших досліджень та розвитку в цій галузі, розробки більш точних та надійних інструментів для аналізу стану та прогнозування показників фінансових показників банку.
Мета роботи: створення системи прогнозування фінансових показників банку з використанням нейронної мережі шляхом визначення ефективних способів аналізу фінансових показників банку
Об’єктом дослідження є процеси прогнозування фінансових показників діяльності банківських установ.
Предметом дослідження є методи, моделі і програмні засоби прогнозування фінансових показників банку.
Методи досліджень: порівняльний та емпіричний методи, моделювання, прогнозування, теорія нейронних мереж, машинне навчання.
Наукова новизна:
– запропоновано спосіб прогнозування, який поєднує використання методу передбачення умовної ймовірності екстремальних подій на основі моделі переходу станів та методу побудови моделі симетрії на коротких часових масштабах;
– запропоновано використання нейронної мережі для прогнозування фінансових показників банку;
– виконано програмну реалізацію запропонованих способів прогнозування фінансових показників.
Практична цінність: розроблені засоби прогнозування фінансових показників сприятимуть підвищенню точності прогнозування чистого прибутку банку в органічних умовах.
Апробація результатів дисертації: основні положення і результати роботи представлені та обговорювались на конференціях:
- X Міжнародна науково-технічна Internet-конференція «Сучасні методи, інформаційне, програмне та технічне забезпечення систем керування організаційно-технічними та технологічними комплексами». 24 листопада 2023 р. – К.: НУХТ, 2023.
- Прикладна математика та комп’ютинг. XVІ науково-практична конференція магістрантів та аспірантів ПМК-2023 факультету прикладної математики 28 - 30 листопада 2023 р., Київ, Україна. – К.:КПІ, 2023.
Публікації: за темою досліджень опубліковано 2 наукові праці – тези доповідей на конференціях.
Структура та обсяг роботи: магістерська дисертація складається з вступу, чотирьох розділів, висновку, списку використаних джерел та додатків.
Вступ містить опис проблем, що виникають при прогнозуванні фінансових показників банку, а також актуальність напрямку досліджень.
Перший розділ містить основні теоретичні відомості щодо існуючих способів прогнозування фінансових показників банку, також виконано їх аналіз. У розділі наведено огляд праць як закордонних, так і вітчизняних вчених, присвячених методам прогнозування.
Другий розділ містить аналіз підходів до прогнозування фінансових показників банку із застосуванням нейронних мереж. Також у розділі представлено дослідження математичних моделей для прогнозування фінансових показників банку.
Третій розділ містить опис запропонованих рішень та їх програмної реалізації, а також програмних модулів для прогнозування фінансових показників банку.
Четвертий розділ містить аналіз результатів, отриманих під час проведення експериментальних досліджень та порівняння з існуючими алгоритмами прогнозування.
Висновки містять підсумки виконаної роботи.
Магістерська дисертація представлена на 74 аркушах, містить 4 додатка, 35 джерел, 16 рисунків і 8 таблиць.
Опис
Ключові слова
forecasting of financial indicators of a bank, mathematical model, neural network, net profit, прогнозування фінансових показників банку, математична модель, нейронна мережа, чистий прибуток
Бібліографічний опис
Абрамов, Є. В. Засоби прогнозування фінансових показників банку з використанням нейронної мережі : магістерська дис. : 123 Комп’ютерна інженерія / Абрамов Єгор Віталійович. – Київ, 2024. – 74 с.