Аналіз якості моделей глибокого навчання в системах рекомендацій

Вантажиться...
Ескіз

Дата

2022

Науковий керівник

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

Дана робота мiстить 128 сторiнок, 34 iлюстрацiй, 10 таблиць, 22 джерел за перелiком посилань. Як i багато iнших напрямкiв iнформацiйних технологiй, рекомендацiйнi системи стрiмко розвиваються i активно дослiджуються iз року в рiк. Це призводить до появи багатьох методiв i алгоритмiв побудови рекомендацiй. Внаслiдок чого постало критичне питання у вiдсутностi єдиного пiдходу до оцiнки їх ефективностi, що призводить до нерепродуктивних та несправедливих результатiв їх порiвняння. У данiй роботi дослiджено метрики якостi в задачах побудови рекомендацiй, класифiковано i проаналiзовно фактори впливу на ефективнiсть систем рекомендацiй. На основi алгоритмiв нейромережевої колаборативної фiльтрацiї, варiацiйного автоенкодера у задачах колаборативної фiльтрацiї i графової нейронної мережi колаборативної фiльтрацiї проведено експериментальне порiвняння якостi рекомендацiй використовуючи вiдкритi набори даних MovieLens, LastFM, NetflixPrize. Сформована стратегiя пришвидшує вiдбiр оптимальних моделей i їх якiсне порiвняння.

Опис

Ключові слова

системи побудови рекомендацiй, recommendation systems, колаборативна фiльтрацiя, collaborative filtering, оцiнка якостi алгоритмiв рекомендацiй, quality evaluation of recommendation algorithms

Бібліографічний опис

Малиняк, В. В. Аналіз якості моделей глибокого навчання в системах рекомендацій : магістерська дис. : 113 Прикладна математика / Малиняк Володимир Володимирович. – Київ, 2022. – 128 с.

DOI