Самонавчання та розвиток алгоритмів машинного навчання для прогнозування фінансових ринків

Вантажиться...
Ескіз

Дата

2024

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

Дипломна робота: 86 с., 22 рис., 6 табл., 23 посилань, 1 додаток. У цій роботі розглянута тема використання нейронних мереж з самонавчанням для передбачення фінансових ринків, перспективи їх використання в сфері фінансів та банкінгу. Об’єктом дослідження стала історія вартості компаній на ринку цінних паперів. Предмет дослідження – нейронні мережі з самонавчанням для прогнозування змін цін ринку акцій. Мета роботи – визначити потенціал використання нейронних мереж з самонавчанням для прогнозування фінансових ринків. В першому розділі досліджено предметну область завдання. Розглянуто різні аспекти фінансового ринку, його особливості та наявні методи передбачення розвитку ринку акцій. В другому розділі проведено огляд різних типів нейронних мереж та методів їх оптимізації. В третьому розділі розроблено програмний продукт для дослідження ефективності нейронних мереж з самонавчанням для прогнозування фінансових ринків та проаналізовано його результати. В четвертому розділі оцінено характеристики програмного продукту та проведено функціонально-вартісний аналіз. Підбито підсумок про потенціал використання нейронних мереж з самонавчанням в сфері фінансів та банкінгу, проведено аналіз моделі та описано способи її подальшого покращення.

Опис

Ключові слова

штучний інтелект, машинне навчання, нейронні мережі, самонавчання, ринок акцій, передавальне навчання, artificial intelligence, machine learning, neural networks, self-learning, stock market, transfer learning

Бібліографічний опис

Стеф’юк, С. В. Самонавчання та розвиток алгоритмів машинного навчання для прогнозування фінансових ринків : дипломна робота ... бакалавра : 122 Комп'ютерні науки / Стеф’юк Станіслав Васильович. – Київ, 2024. – 85 с.

DOI