Енергозберігаюча система контролю електричних сигналів на основі мікроконтролера з сегнетоелектричною оперативною пам’яттю
dc.contributor.advisor | Прокопенко, Юрій Васильович | |
dc.contributor.author | Реутов, Сергій Олександрович | |
dc.date.accessioned | 2023-08-29T13:35:00Z | |
dc.date.available | 2023-08-29T13:35:00Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Мета роботи – огляд компонентів та функціональних можливостей мікроконтролера MSP430FR2355, аналіз його характеристик та застосування, розробка елементів програмного забезпечення для контролю електричних сигналів із забезпеченням низького рівня потужності, що споживається мікроконтролером. Програмне забезпечення, розроблено у середовищі Code Composer Studio, використовуючи алгоритмічні мови C та Assembler. У першому розділі наведено порівняння структури та характеристик сегнетоелектричної пам’яті з іншими типами оперативної пам’яті. Другий розділ присвячено огляду модулів мікроконтролера MSP430FR2355, та розглянуто основні відомості щодо середовища розробки та робочого стенду. У третьому розділі розглянуто приклади реалізації схем аналізу електричних сигналів з сенсорів. Робота виконана згідно вимог нормативних документів КПІ ім. Ігоря Сікорського та чинних державних стандартів, в додатках вказані програмні коди. | uk |
dc.description.abstractother | The purpose of the work is a review of the components and functionality of the microcontroller MSP430FR2355, analysis of its characteristics and applications, development of software elements for the control of electrical signals with a low level of power consumed by the microcontroller. Software developed in Code Composer Studio using the C and Assembler algorithmic languages. The first section compares the structure and characteristics of ferroelectric memory with other types of RAM. The second section is devoted to an overview of the MSP430FR2355 microcontroller modules and discusses basic information about the development environment and the stand. The third section discusses examples of the implementation of schemes for the analysis of electrical signals from sensors. The work was performed in accordance with the requirements of normative documents of KPI. Igor Sikorsky and current state standards, the appendices contain program codes. MSP430FR2355 - Mixed-Signal Microcontroller MSP430FR215x and MSP430FR235x microcontrollers (MCUs) are part of the MSP430TM MCU value line portfolio of ultra-low-power low-cost devices for sensing and measurement applications. MSP430FR235x MCUs integrate four configurable signal-chain modules called smart analog combos, each of which can be used as a 12-bit DAC or a configurable programmable-gain Op-Amp to meet the specific needs of a system while reducing the BOM and PCB size. The device also includes a 12-bit SAR ADC and two comparators. The MSP430FR215x and MSP430FR235x MCUs all support an extended temperature range from –40 up to 105C, so higher temperature industrial applications can benefit from the devices' FRAM data-logging capabilities. The extended temperature range allows developers to meet requirements of applications such as smoke detectors, sensor transmitters, and circuit breakers. The MSP430FR215x and MSP430FR235x MCUs feature a powerful 16-bit RISC CPU, 16-bit registers, and a constant generator that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode typically in less than 10 s. The MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatile behavior of flash. MSP430FR215x and MSP430FR235x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP-EXP430FR2355 LaunchPadTM development kit and the MSP-TS430PT48 48-pin target development board. TI also provides free MSP430WareTM software, which is available as a component of Code Composer StudioTM IDE desktop and cloud versions within TI Resource Explorer. The MSP430 MCUs are also supported by extensive online collateral, training, and online support through the E2ETM support forums. Ferroelectric RAM (FeRAM, F-RAM or FRAM) is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory. FeRAM's advantages over Flash include: lower power usage, faster write performance and a much greater maximum read/write endurance (about 1010 to 1014 cycles). FeRAMs have data retention times of more than 10 years at +85 °C (up to many decades at lower temperatures). Market disadvantages of FeRAM are much lower storage densities than flash devices, storage capacity limitations and higher cost. Like DRAM, FeRAM's read process is destructive, necessitating a write-after-read architecture Conventional DRAM consists of a grid of small capacitors and their associated wiring and signaling transistors. Each storage element, a cell, consists of one capacitor and one transistor, a so-called "1T-1C" device. It is typically a type of MOS memory, fabricated using CMOS technology.[11] DRAM cells scale directly with the size of the semiconductor fabrication process being used to make it. For instance, on the 90 nm process used by most memory providers to make DDR2 DRAM, the cell size is 0.22 μm2, which includes the capacitor, transistor, wiring, and some amount of "blank space" between the various parts — it appears 35% utilization is typical, leaving 65% of the space empty (for separation). DRAM data is stored as the presence or lack of an electrical charge in the capacitor, with the lack of charge in general representing "0". Writing is accomplished by activating the associated control transistor, draining the cell to write a "0", or sending current into it from a supply line if the new value should be "1". Reading is similar in nature; the transistor is again activated, draining the charge to a sense amplifier. If a pulse of charge is noticed in the amplifier, the cell held a charge and thus reads "1"; the lack of such a pulse indicates a "0". Note that this process is destructive, once the cell has been read. If it did hold a "1," it must be re-charged to that value again. Since a cell loses its charge after some time due to leak currents, it must be actively refreshed at intervals. The 1T-1C storage cell design in an FeRAM is similar in construction to the storage cell in widely used DRAM in that both cell types include one capacitor and one access transistor. In a DRAM cell capacitor, a linear dielectric is used, whereas in an FeRAM cell capacitor the dielectric structure includes ferroelectric material, typically lead zirconate titanate (PZT). A ferroelectric material has a nonlinear relationship between the applied electric field and the apparent stored charge. Specifically, the ferroelectric characteristic has the form of a hysteresis loop, which is very similar in shape to the hysteresis loop of ferromagnetic materials. The dielectric constant of a ferroelectric is typically much higher than that of a linear dielectric because of the effects of semi-permanent electric dipoles formed in the crystal structure of the ferroelectric material. When an external electric field is applied across a dielectric, the dipoles tend to align themselves with the field direction, produced by small shifts in the positions of atoms and shifts in the distributions of electronic charge in the crystal structure. After the charge is removed, the dipoles retain their polarization state. Binary "0"s and "1"s are stored as one of two possible electric polarizations in each data storage cell. For example, in the figure a "1" is encoded using the negative remnant polarization "-Pr", and a "0" is encoded using the positive remnant polarization "+Pr". In terms of operation, FeRAM is similar to DRAM. Writing is accomplished by applying a field across the ferroelectric layer by charging the plates on either side of it, forcing the atoms inside into the "up" or "down" orientation (depending on the polarity of the charge), thereby storing a "1" or "0". Reading, however, is somewhat different than in DRAM. The transistor forces the cell into a particular state, say "0". If the cell already held a "0", nothing will happen in the output lines. If the cell held a "1", the re-orientation of the atoms in the film will cause a brief pulse of current in the output as they push electrons out of the metal on the "down" side. The presence of this pulse means the cell held a "1". Since this process overwrites the cell, reading FeRAM is a destructive process, and requires the cell to be re-written. In general, the operation of FeRAM is similar to ferrite core memory, one of the primary forms of computer memory in the 1960s. However, compared to core memory, FeRAM requires far less power to flip the state of the polarity and does so much faster. | uk |
dc.format.extent | 46 с. | uk |
dc.identifier.citation | Реутов, C. О. Енергозберігаюча система контролю електричних сигналів на основі мікроконтролера з сегнетоелектричною оперативною пам’яттю : дипломна робота … бакалавра : 153 Мікро- та наносистемна техніка / Реутов Сергій Олександрович. – Київ, 2021. – 46 с. | uk |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/59629 | |
dc.language.iso | uk | uk |
dc.publisher | КПІ ім. Ігоря Сікорського | uk |
dc.publisher.place | Київ | uk |
dc.subject | FRAM | uk |
dc.subject | сенсор світла | uk |
dc.subject | проектування в середовищі CSS | uk |
dc.title | Енергозберігаюча система контролю електричних сигналів на основі мікроконтролера з сегнетоелектричною оперативною пам’яттю | uk |
dc.type | Bachelor Thesis | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Reutov_bakalavr.pdf
- Розмір:
- 1.16 MB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 9.1 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: