Machine Learning Models Stacking in the Malicious Links Detecting
dc.contributor.author | Khukalenko, Yevhenii | |
dc.contributor.author | Stopochkina, Iryna | |
dc.contributor.author | Ilin, Mykola | |
dc.date.accessioned | 2023-11-22T10:43:44Z | |
dc.date.available | 2023-11-22T10:43:44Z | |
dc.date.issued | 2023 | |
dc.description.abstract | An analysis of the performance of various classifiers on address and network groups of features was performed. A new classification model is proposed, which is a stacking of 3 models: kNN, XGBoost and Transformer. The best model for stacking was experimentally determined: Logistic Regression, which made it possible to improve the result of the best available model by 3%. The hypothesis that stacking a larger number of worse models has an advantage over stacking a smaller number of more productive models on the used data set was confirmed: regardless of the choice of stacking metaalgorithm, stacking of three models showed better results than stacking two. | uk |
dc.format.pagerange | Pp. 67-79 | uk |
dc.identifier.citation | Khukalenko, Ye. Machine Learning Models Stacking in the Malicious Links Detecting / Yevhenii Khukalenko, Iryna Stopochkina, Mykola Ilin // Theoretical and Applied Cybersecurity : scientific journal. – 2023. – Vol. 5, Iss. 1. – Pp. 67–79. – Bibliogr. 33 ref. | uk |
dc.identifier.doi | https://doi.org/10.20535/tacs.2664-29132023.1.287752 | |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/62372 | |
dc.language.iso | en | uk |
dc.publisher | Igor Sikorsky Kyiv Polytechnic Institute | uk |
dc.publisher.place | Kyiv | uk |
dc.relation.ispartof | Theoretical and Applied Cybersecurity: scientific journal, Vol. 5, No. 1 | uk |
dc.subject | Malicious URL | uk |
dc.subject | Machine Learning | uk |
dc.subject | Stacking | uk |
dc.subject.udc | 004.056:004.89 | uk |
dc.title | Machine Learning Models Stacking in the Malicious Links Detecting | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- 287752-664108-1-10-20230919.pdf
- Розмір:
- 758.56 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 9.1 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: