Unknown location targets searching system in known environment using reinforcement learning
Вантажиться...
Дата
2023
Автори
Науковий керівник
Назва журналу
Номер ISSN
Назва тому
Видавець
КПІ ім. Ігоря Сікорського
Анотація
This article investigates two different approaches to searching for objects of a certain type in a known environment: with a centrally controlled system using individual modules that transmit information and by dividing the entire search area into smaller ones and using individual objects. The article conducts experiments using reinforcement learning algorithms to compare the learning speed and capabilities of a system with search modules and centralized control and a separate object to search for static objects with random locations in a known environment and to search for objects moving at a constant speed in a known environment. The article provides detailed information about the experimental design, including the definition of the parameters for reinforcement learning and the size of the input and output data for the neural network. The results of the experiments are presented graphically, demonstrating the effectiveness of reinforcement learning and the difference in the learning speed and capabilities of the two systems under study.
Опис
Ключові слова
reinforcement learning, system of search modules, object detection
Бібліографічний опис
Albrekht, Y. Unknown location targets searching system in known environment using reinforcement learning / Y. Albrekht, A. Pysarenko // Адаптивні системи автоматичного управління : міжвідомчий науково-технічний збірник. – 2023. – № 1 (42). – С. 9-14. – Бібліогр.: 5 назв.