Quintile regression based approach for dynamical var and cvar forecasting using metalog distribution
dc.contributor.author | Zrazhevsky, G. | |
dc.contributor.author | Zrazhevska, V. | |
dc.date.accessioned | 2022-04-25T14:45:02Z | |
dc.date.available | 2022-04-25T14:45:02Z | |
dc.date.issued | 2021 | |
dc.description.abstracten | The paper proposes a new method of dynamic VaR and CVaR (ES) risk measures forecasting. Quantile linear GARCH model is chosen as the main forecasting model for time series quantiles. To build a forecast, the values of quantiles are approximated by the metalog distribution, which makes it possible to use analytical formulas to evaluate risk measures. The method of VaR and CVaR forecasting is formulated as a step-by-step algorithm. At the first stage, an initial model is built to obtain variance estimates. The predicted variance values obtained from the constructed model are used at the second stage to find the QLGARCH model coefficients by solving the minimization problem. At the third stage, the QLGARCH models are estimated on a non uniform quantile grid. The obtained predicted values of quantiles are used to estimate the approximating metalog distribution. The investigated theory is applied to VaR and CVaR forecasting for time series of daily log return of the DJI index. | uk |
dc.format.pagerange | С. 139-150 | uk |
dc.identifier.citation | Zrazhevsky, G. Quintile regression based approach for dynamical var and cvar forecasting using metalog distribution / G. Zrazhevsky, V. Zrazhevska // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2021. – № 1. – С. 139-150. – Бібліогр.: 19 назв. | uk |
dc.identifier.doi | https://doi.org/10.20535/SRIT.2308-8893.2021.1.12 | |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/46997 | |
dc.language.iso | en | uk |
dc.publisher | КПІ ім. Ігоря Сікорського | uk |
dc.publisher.place | Київ | uk |
dc.source | Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал, № 1 | uk |
dc.subject | VaR | uk |
dc.subject | CVaR | uk |
dc.subject | Expected Shortfall | uk |
dc.subject | dynamic risk measures | uk |
dc.subject | forecast | uk |
dc.subject | Quantile LGARCH model | uk |
dc.subject | metalog distribution | uk |
dc.subject.udc | 519.6 : 519.81 | uk |
dc.title | Quintile regression based approach for dynamical var and cvar forecasting using metalog distribution | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- 2021_1_139-150.pdf
- Розмір:
- 278.81 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 9.1 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: