Quintile regression based approach for dynamical var and cvar forecasting using metalog distribution

dc.contributor.authorZrazhevsky, G.
dc.contributor.authorZrazhevska, V.
dc.date.accessioned2022-04-25T14:45:02Z
dc.date.available2022-04-25T14:45:02Z
dc.date.issued2021
dc.description.abstractenThe paper proposes a new method of dynamic VaR and CVaR (ES) risk measures forecasting. Quantile linear GARCH model is chosen as the main forecasting model for time series quantiles. To build a forecast, the values of quantiles are approximated by the metalog distribution, which makes it possible to use analytical formulas to evaluate risk measures. The method of VaR and CVaR forecasting is formulated as a step-by-step algorithm. At the first stage, an initial model is built to obtain variance estimates. The predicted variance values obtained from the constructed model are used at the second stage to find the QLGARCH model coefficients by solving the minimization problem. At the third stage, the QLGARCH models are estimated on a non uniform quantile grid. The obtained predicted values of quantiles are used to estimate the approximating metalog distribution. The investigated theory is applied to VaR and CVaR forecasting for time series of daily log return of the DJI index.uk
dc.format.pagerangeС. 139-150uk
dc.identifier.citationZrazhevsky, G. Quintile regression based approach for dynamical var and cvar forecasting using metalog distribution / G. Zrazhevsky, V. Zrazhevska // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2021. – № 1. – С. 139-150. – Бібліогр.: 19 назв.uk
dc.identifier.doihttps://doi.org/10.20535/SRIT.2308-8893.2021.1.12
dc.identifier.urihttps://ela.kpi.ua/handle/123456789/46997
dc.language.isoenuk
dc.publisherКПІ ім. Ігоря Сікорськогоuk
dc.publisher.placeКиївuk
dc.sourceСистемні дослідження та інформаційні технології : міжнародний науково-технічний журнал, № 1uk
dc.subjectVaRuk
dc.subjectCVaRuk
dc.subjectExpected Shortfalluk
dc.subjectdynamic risk measuresuk
dc.subjectforecastuk
dc.subjectQuantile LGARCH modeluk
dc.subjectmetalog distributionuk
dc.subject.udc519.6 : 519.81uk
dc.titleQuintile regression based approach for dynamical var and cvar forecasting using metalog distributionuk
dc.typeArticleuk

Файли

Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
2021_1_139-150.pdf
Розмір:
278.81 KB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
9.1 KB
Формат:
Item-specific license agreed upon to submission
Опис: