Моделювання характеристик сенсора газу на основі оксиду олова
dc.contributor.advisor | Тимофєєв, Володимир Іванович | |
dc.contributor.author | Полібін, Юрій Валерійович | |
dc.date.accessioned | 2023-08-30T09:46:08Z | |
dc.date.available | 2023-08-30T09:46:08Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Об’єктом дослідження є аналіз та розробка сенсора газу на основі оксиду олова. Предмет дослідження – характеристики сенсора газу з модифікованою чутливою поверхнею. Метою роботи є математичне моделювання сенсора газу на основі оксиду олова і аналіз вихідних характеристик для подальшого удосконалення його структури. Мета роботи досягається вирішенням наступних задач: − проаналізувати технології виготовлення сенсорів і методів їх моделювання; − проаналізувати параметри і характеристики сенсорів кисню на основі оксиду олова; − вибрати модель для розрахунку кисню. Порівняти вибрану модель з іншими моделями сенсорів; − провести розрахунки вихідних характеристик сенсора за допомогою середовища MATLAB; − проаналізувати та порівняти отримані результати теоретичних досліджень з експериментальними даними. У першому розділі роботи розглядається будова сенсорів, топологія наноструктур, їх класифікація. Другий розділ розкриває різні моделі сенсорів, їх принцип роботи, проводиться аналіз їх вихідних характеристик. В третьому розділі проводиться власне моделювання вихідних характеристик сенсора газу. | uk |
dc.description.abstractother | The object of the study are gas sensors based on tin oxide. The subject of research is the characteristics of a gas sensor with a modified sensitive surface Purpose and objectives of the work. The aim of the work is mathematical modeling of a gas sensor based on tin oxide and analysis of the initial characteristics to further improve its structure. The purpose of work is reached by the decision at the following problems: - analyze the technology of manufacturing sensors and methods of their modeling; - analyze the parameters and characteristics of oxygen sensors based on tin oxide; - choose a model to calculate oxygen. Compare the selected model with other sensor models; - to calculate the output characteristics of the sensor using Matlab environment. analyze and compare the results of theoretical research with experimental data. The first section deals with the structure of sensors, the topology of nanostructures, their classification. The second section reveals the different models of sensors, their principle of operation, the analysis of their initial characteristics. In the third section, the actual simulation of the output characteristics of the gas sensor is performed. Actuality of theme: when modeling a chemical sensor, two parameters are quite important - sensitivity and selectivity. Today, existing sensor designs and mathematical models are constantly being improved, which allows us to develop new design approaches and obtain promising sensor designs. New chemical sensors based on nanomaterials can increase the level of accuracy of sensor measurements. The development of an analytical model of the sensor, which allows to assess the impact on the initial characteristics of the structure parameters, is an urgent task. An important aspect is also the possibility of modeling the effect of modified nanosystems sensitive surface of the sensor. Improvement and development of methods of solid-state electronics and microelectronics allow creating new types of devices for obtaining, processing, storing and visualizing information. One of the directions, the development of which seems promising, is the creation of microcircuits and microdevices capable of performing chemical analysis, recognizing and synthesizing odors, and conducting individual medical diagnostics [1–9]. The scope of such devices includes environmental monitoring systems, facility security systems, process control devices, medical diagnostics systems, etc. [10 - 16]. The particular interest from the point of view of microelectronics is the development of gas-sensitive devices that can be technologically compatible with modern technological processes in microelectronics and integrated into cell phones, personal computers and other mobile devices. The most significant advances in this direction have been achieved in the development of gas-sensitive transistors, semiconductor gas-sensitive resistors [17 - 24]. Gas-sensitive thin-film resistors based on tin dioxide were chosen as the object of research, which are widely studied at the present time, at the same time finding practical application both in laboratory and in industrial gas sensors and multisensor microsystems for the analysis of complex vapor-gas conductivity, mixtures. The dependence of the processes in a gas-sensitive resistor, which reflects on the one hand the temperature side of physics, and which, on the other hand, is one of the important characteristics of the sensor as a device, is considered. Measuring the conductivity at cyclic temperature changes provides information about the partial pressure of a foreign gas in the air and the type of this gas. That is, knowledge of the temperature dependence of conductivity is necessary for the correct use of the sensor, as well as for the recognition and analysis of complex gas mixtures. In the scientific literature, it was noted that on the dependence of the resistance of thin gas-sensitive films of tin oxide, there is a region of increase in resistance with temperature, which is not typical for semiconductors. This region was not observed for single crystals or heavily doped films. The literature offers qualitative explanations for this feature of the temperature dependence of resistance, but they are contradictory. Some authors associate this feature with the influence of humidity, while others - with a change in the filling of the film surface with adsorbed particles. The theory remains a subject of debate in the scientific literature. Therefore, the study of the processes that determine the form of the temperature dependence of the conductivity of resistive gas sensors, improving the understanding of the mechanism of the effect of temperature on conductivity, a mathematical description of the temperature dependence of the conductivity of resistive gas sensors are relevant both from the fundamental and applied points of view. The peculiarities of modern technologies are such that there is an objective need to reduce the size of sensor elements, expand the range of sensitivity and qualitatively change their designs, which make it possible to record and evaluate previously inaccessible process parameters. The unique properties of nanostructures make it possible to bypass the limitations that arose when using "traditional" sensitive elements, and the principle of their operation is based on the structural features and quantum-size effects that arise during the transition to the nanoscale. The analysis and review of model constructions were carried out in the work, the mechanisms of functioning of nanosensor systems on the basis of metal nanoparticles, quantum dots, nanowires and oxide metal nanostructures were considered. Descriptions of the construction, properties and possibilities of modification of nanostructures are described. They solve a number of problems that are inherent in sensor models without a system of nanowires or other modifications. Modified models allow you to open new ranges of operation in sensor systems. The use of modifications in the sensors is a higher reaction rate and sensitivity. A sensor model is proposed that takes into account the effect of modification of the sensitive surface. The mechanisms of the sensory effect of SnO2 films, which determine the influence of particle size and temperature on their efficiency, contribute to the selection of optimal conditions for obtaining highly efficient selective high-speed sensors. It is shown that the modified sensitive surface allows to improve the sensitivity of the sensor by about 20% on certain parameters. The results are obtained and the analysis of initial characteristics with and without nanowires is performed, the dependence of sensitivity on such parameters as sensor surface area, temperature dependences, parameters of influence of donor impurity ion concentration and oxygen vacancies and electron concentration in film is calculated. | uk |
dc.format.extent | 88 с. | uk |
dc.identifier.citation | Полібін, Ю. В. Моделювання характеристик сенсора газу на основі оксиду олова : дипломна робота … бакалавра : 153 Мікро- та наносистемна техніка / Полібін Юрій Валерійович. – Київ, 2021. – 88 с. | uk |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/59658 | |
dc.language.iso | uk | uk |
dc.publisher | КПІ ім. Ігоря Сікорського | uk |
dc.publisher.place | Київ | uk |
dc.subject | сенсор газу | uk |
dc.subject | оксид олова | uk |
dc.title | Моделювання характеристик сенсора газу на основі оксиду олова | uk |
dc.type | Bachelor Thesis | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Polibin_bakalavr.pdf
- Розмір:
- 2.25 MB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 9.1 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: