Models for analyzing and forecasting share prices on the stock exchange
dc.contributor.author | Piznak, R. | |
dc.contributor.author | Likhouzova, T. | |
dc.date.accessioned | 2024-11-12T13:59:44Z | |
dc.date.available | 2024-11-12T13:59:44Z | |
dc.date.issued | 2024 | |
dc.description.abstract | The work is devoted to the analysis and forecasting of share prices for four leading technology companies: Nvidia, Apple, Google, and Netflix. These companies are leaders in their fields and have a significant impact on the global economy. The goal is to study the dependencies affecting the share prices of companies, as well as to develop models for forecasting future trends. In the work, a thorough analysis of historical data on company share prices and their macroeconomic indicators was carried out. The study was based on the fundamental concepts of economic science. The study results are expected to provide a deeper understanding of the prospects of these companies. | |
dc.format.pagerange | С. 175-185 | |
dc.identifier.citation | Piznak, R. Models for analyzing and forecasting share prices on the stock exchange / R. Piznak, T. Likhouzova // Адаптивні системи автоматичного управління : міжвідомчий науково-технічний збірник. – 2024. – № 2 (45). – С. 175-185. – Бібліогр.: 11 назв. | |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/70536 | |
dc.language.iso | en | |
dc.publisher | КПІ ім. Ігоря Сікорського | |
dc.publisher.place | Київ | |
dc.rights.uri | https://creativecommons.ru/licenses | |
dc.source | Адаптивні системи автоматичного управління : міжвідомчий науково-технічний збірник, № 2 (45), 2024 | |
dc.subject | intelligent data analysis | |
dc.subject | prediction model | |
dc.subject | time series | |
dc.subject | LSTM | |
dc.subject | decision tree | |
dc.subject | ARIMA | |
dc.subject | accuracy metrics | |
dc.subject.udc | 004.94 | |
dc.title | Models for analyzing and forecasting share prices on the stock exchange | |
dc.type | Article |
Файли
Контейнер файлів
1 - 1 з 1
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 8.98 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: