Methodology of the countries’ economic development data analysis

Вантажиться...
Ескіз

Дата

2023

Науковий керівник

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

The paper examines the issue of improving the methods of identification of economic objects and their analysis using algorithms of intelligent data processing. The use of the developed methodology in the economic analysis allows for improvement in the quality of management. It can be the basis for creating decision support systems to prevent potentially dangerous changes in the economic status of the research object. In this work, an improved method of c-means data clustering with agent-oriented modification is proposed, and a radial-basis neural network and its extension are proposed to determine whether the obtained clusters are relevant and to analyze the informativeness of state variables and obtain a subset of informative variables. The effect of applying data compression using an autoencoder on the accuracy of the methods is also considered. According to the results of testing of the developed methodology, it was proved that the probability of incorrect determination of the state was reduced when identifying the states of economic systems, and a reduced value of the error of the third kind was obtained when classifying the states of objects.

Опис

Ключові слова

machine learning, digital development, fuzzy clustering, radial basis neural networks, logistic regression, analysis of variables informativeness, машинне навчання, цифровий розвиток, нечітка кластеризація, радіально базисні нейромережі, логістична регресія, аналіз інформативності змінних

Бібліографічний опис

Methodology of the countries’ economic development data analysis / V. V. Donets, V. Y. Strilets, M. L. Ugryumov, D. O. Shevchenko, S. V. Prokopovych, L. O. Chagovets // Системні дослідження та інформаційні технології : міжнародний науково-технічний журнал. – 2023. – № 4. – С. 21-36. – Бібліогр.: 27назв.