Система сегментації COVID-19 за допомогою моделі на основі трансформеру

Вантажиться...
Ескіз

Дата

2023

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

Актуальність теми. В останні декілька років поширеність моделі штучного інтелекту трансформер набула надзвичайних масштабів. Ефективність цієї моделі та вражаючі результати систем побудованих на її основі набули широкого розголосу та привернули увагу не тільки наукової спільноти, а й усього світу. Не зважаючи на те, що ця архітектура була створена для галузі обробки природної мови, вона швидко розповсюдилась і на інші області штучного інтелекту. Особливо цікавою є перспектива застосування цієї технології у області сегментації медичних зображень, де вже багато років одноосібно домінує модель U-Net та її модифікації. Архітектура трансформер базується навколо механізму уваги, який славиться своїм умінням розраховувати глибокі просторові ознаки, які недоступні повністю згортковим моделям, до яких належить U-Net. Особливо перспективним є використання трансформеру в задачі сегментації COVID-19 в КТ зображеннях, де оперування глибокими просторовими ознаками може значно підвищити якість вихідних сегментаційних масок. Мета і завдання роботи. Метою роботи є застосування нейронних мереж на базі архітектури трансформер до задачі сегментування COVID-19 в зображеннях комп'ютерної томографії та порівняння результатів точності таких моделей з традиційними, повністю згортковими мережами

Опис

Ключові слова

COVID-19, комп’ютерна томографія, сегментація, згорткова мережа, трансформер, рецептивне поле, механізм уваги, computed tomography, segmentation, convolutional network, transformer, receptive field, attention mechanism

Бібліографічний опис

Олексенко, І. О. Система сегментації COVID-19 за допомогою моделі на основі трансформеру : дипломна робота ... бакалавра : 122 Комп’ютері науки / Олексенко Ілля Олегович. – Київ, 2023. – 69 с

DOI