OSINT Time Series Forecasting Methods Analysis
dc.contributor.author | Feher, A. | |
dc.contributor.author | Lande, D. | |
dc.date.accessioned | 2023-11-22T05:11:34Z | |
dc.date.available | 2023-11-22T05:11:34Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Time series forecasting is an important niche in the modern decision-making and tactics selection process, and in the context of OSINT technology, this approach can help predict events and allow for an effective response to them. For this purpose, LSTM, ARIMA, LPPL (JLS), N-gram were selected as time series forecasting methods, and their simple forms were implemented based on the time series of quantitative mentions of nato, himars, starlink and cyber threats statings obtained and generated using OSINT technology. Based on this, their overall effectiveness and the possibility of using them in combination with OSINT technology to form a forecast of the future were investigated. | uk |
dc.format.pagerange | Pp. 39-43 | uk |
dc.identifier.citation | Feher, A. OSINT Time Series Forecasting Methods Analysis / A. Feher, D. Lande // Theoretical and Applied Cybersecurity : scientific journal. – 2023. – Vol. 5, Iss. 1. – Pp. 39–43. – Bibliogr. 10 ref. | uk |
dc.identifier.doi | https://doi.org/10.20535/tacs.2664-29132023.1.287750 | |
dc.identifier.uri | https://ela.kpi.ua/handle/123456789/62357 | |
dc.language.iso | en | uk |
dc.publisher | Igor Sikorsky Kyiv Polytechnic Institute | uk |
dc.publisher.place | Kyiv | uk |
dc.relation.ispartof | Theoretical and Applied Cybersecurity: scientific journal, Vol. 5, No. 1 | uk |
dc.subject | time-series | uk |
dc.subject | prediction | uk |
dc.subject | osint | uk |
dc.subject.udc | 004.05 | uk |
dc.title | OSINT Time Series Forecasting Methods Analysis | uk |
dc.type | Article | uk |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- 287750-664091-1-10-20230919.pdf
- Розмір:
- 242.51 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 1.71 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: