Моделювання сенсора глюкози на основі транзистора на нанотрубках

dc.contributor.advisorТимофєєв, Володимир Іванович
dc.contributor.authorБунько, Марія Михайлівна
dc.date.accessioned2021-03-17T12:30:01Z
dc.date.available2021-03-17T12:30:01Z
dc.date.issued2020
dc.description.abstractenThe object of the study was a glucose biosensor based on a field-effect transistor on a carbon nanotube. The aim of this work is to model a glucose biosensor based on a field-effect transistor on a carbon nanotube. The first section reviews the literature. You can often hear this diagnosis - diabetes. Diabetes is one of the most common diseases in the modern world. Patients with diabetes need to constantly monitor blood sugar levels. Usually the fixation of blood glucose levels can be performed using a biosensor. This section discusses the principle of operation of the biosensor to determine glucose levels. Preferably, most biological sensors are based on the interaction of a biological sample being studied with a reagent to form a new reaction product. This reaction is recorded by a sensor and converted into an electric current, or is associated with modulation of conductivity in the surface layer of the field structure. The properties of sensitive elements that selectively respond to one or more analytes, as well as the structure of transistor converters of the analytical signal, which translate the characteristic features of chemical or biochemical reactions into a physical parameter, are considered. If enzymes or other specific biological objects are used as the recognition reagent, such structures can be used as biosensors. Methods and applications of carbon nanotubes, their classification, and structure review are also traced. Carbon nanotubes are a sheet of graphene plane rolled into a cylinder. Their classification can be divided into two categories: multilayer carbon nanotubes and single-layer carbon nanotubes and structure review. Electrical characteristics that vary depending on the diameter of the cylinder and the angle of coagulation of graphene. Much attention is paid to single-layer carbon nanotubes that consist of a single shell of carbon atoms and have promising mechanical and electrical properties. This type of nanotubes exhibit the physical properties of both metallic and semiconductor materials. It is best to characterize such tubes with such concepts as chirality and chiral vector. Carbon nanotubes have a number of unique properties that determine the prospects for their use in sensors. They are characterized by very high strength, which exceeds the strength of steel, and at the same time good deformation elasticity. This is due to the geometry of their structure, which evenly distributes the load, as well as the strength between the carbon bonds. Carbon nanotubes have a wide range of electrical properties. Most tubes are semiconductors, but the middle ones are excellent conductors and even insulators. The conductivity of a nanotube depends on its geometric structure, namely on the orientation of the graphite plane relative to the axis of the nanotube. Single-layer carbon nanotubes have unique electrophysical properties. Due to the one-dimensional structure, they are characterized by very high transport characteristics and can withstand large values of current. Methods of synthesis of carbon nanotubes and methods of their production are offered: electric arc method, laser sputtering, high pressure carbon conversion (HiPCO) and chemical vapor deposition (CVD). Among these methods, the method of chemical vapor deposition has the best performance in terms of applications of a field-effect transistor on a nanotube. An overview of field-effect transistors - semiconductor devices, the operation of which is based on the change of resistance of a semiconductor by a transverse electric field - is also offered. Only one type of carrier, either an electron or a hole, is involved in the flow of current. The movement of current is carried out between the source and the drain through the channel. It is also considered how to use a single-layer carbon nanotube to create a field-effect transistor. The structure of a field-effect transistor on a nanotube is similar to the structure of a typical field-effect transistor, where a carbon nanotube forms a channel between two electrodes that acts as the source and drain of the transistor. The main stages of manufacturing field-effect transistors on a single-layer carbon nanotube are considered. Structures for glucose sensors are proposed on the basis of field-effect transistors on a carbon nanotube. Namely, a glucose sensor based on a field-effect transistor on a single-layer carbon nanotube with a dielectric on a polyester PET and a high-k dielectric. In the second section of the work, mathematical modeling of biosensors based on a field-effect transistor on a carbon nanotube is performed to detect glucose and calculate the initial characteristics of the biosensor. Two mathematical models of the biosensor are considered, in which the structure of the sensor is similar, but the design is different. The biosensor current is a function of glucose concentration and can therefore be used for a wide range of concentration changes. The presented analytical models of sensors allow to analyze the sensitivity of the sensor depending on the length and diameter of the nanotube, the capacity of the PET polymer and the PBS voltage. The third section discusses the main parameters of biosensors such as: selectivity, accuracy, sensitivity, linearity, response time and regeneration time, service life, hysteresis and repeatability. These parameters can be improved by using nanomaterials. It is considered that the width of the band gap depends entirely on the diameter of the nanotube and its chirality (n, m). The table with the selected values of n, m is shown and according to them the width of the forbidden zone and other parameters are calculated. Mathematical models of sensors are realized with the help of Matlab environment. Two sensor models use polyester (PET) as a gate dielectric. However, the output characteristics for identical input data for the sensor structure based on a field-effect transistor on a single-layer carbon nanotube were obtained. A comparison with the experimental curve at the same value of glucose concentration is performed. The analysis of theoretical dependences of output current on glucose concentration, and also geometrical parameters of the channel of the transistor on the basis of a carbon nanotube - diameter and length, and also thickness of a dielectric is carried out. It is considered how each change of these parameters affects the initial characteristics of glucose biosensors.uk
dc.description.abstractukОб’єктом дослідження роботи став біосенсор глюкози на основі польового транзистора на вуглецевій нанотрубці. Метою даної роботи є моделювання біосенсора глюкози на основі польового транзистора на вуглецевій нанотрубці. У першому розділі проводиться огляд літератури. Розглядається робота біосенсора. Також прослідковуються методи і застосування вуглецевих нанотрубок, їх класифікація, та огляд структури. Пропонуються методи синтезу та властивості одношарових вуглецевих нанотрубок. Також пропонується огляд польових транзисторів з вуглецевою нанотрубкою. Їх виготовлення та характеристики. На основі польових транзисторів на вуглецевій нанотрубці пропонуються структури для сенсорів глюкози. У другому розділі роботи проводиться математичне моделювання біосенсорів на основі польового транзистора на вуглецевій нанотрубці для виявлення глюкози та розрахунку вихідних характеристик біосенсора. Розглядається дві математичні моделі біосенсора. У третьому розділі за допомогою програмного забезпечення Matlab проводиться аналіз теоретичних залежностей вихідного струму від концентрації глюкози, а також геометричних параметрів каналу транзистора на основі вуглецевої нанотрубки – діаметра і довжини, а також товщини діелектрика. Розглянуто як кожна зміна цих параметрів впливає на вихідні характеристики біосенсорів глюкози.uk
dc.format.page68 с.uk
dc.identifier.citationБунько, М. М. Моделювання сенсора глюкози на основі транзистора на нанотрубках : дипломна робота ... бакалавра : 153 Мікро- та наносистемна техніка / Бунько Марія Михайлівна. – Київ, 2020. – 68 с.uk
dc.identifier.urihttps://ela.kpi.ua/handle/123456789/40071
dc.language.isoukuk
dc.publisherКПІ ім. Ігоря Сікорськогоuk
dc.publisher.placeКиївuk
dc.subjectбіосенсорuk
dc.subjectсенсорuk
dc.subjectглюкозаuk
dc.subjectвуглецева нанотрубкаuk
dc.subjectодношарова вуглецева нанотрубкаuk
dc.subjectтранзисторuk
dc.subjectтранзистор на вуглецевій нанотрубціuk
dc.subjectмоделюванняuk
dc.subjectbiosensoruk
dc.subjectsensoruk
dc.subjectglucoseuk
dc.subjectcarbon nanotubleuk
dc.subjectsingle layer carbon nanotubeuk
dc.subjecttransistoruk
dc.subjectcarbon nanotuble transistoruk
dc.subjectnanotubleuk
dc.titleМоделювання сенсора глюкози на основі транзистора на нанотрубкахuk
dc.typeBachelor Thesisuk

Файли

Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Brunko_bakalavr.pdf
Розмір:
3.61 MB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
9.01 KB
Формат:
Item-specific license agreed upon to submission
Опис: