Метод визначення учасників і кадру моменту дорожньо- транспортної пригоди за вхідним відеопотоком на основі машинного навчання

Вантажиться...
Ескіз

Дата

2024

Науковий керівник

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

Структура і обсяг кваліфікаційної роботи. Магістерська дисертація складається зі вступу, п’яти розділів, висновків та 2 додатків. Робота містить посилання на 23 джерела, 18 рисунків та 9 таблиць. Основна частина роботи викладена на 76 сторінках. Актуальність. Дорожньо-транспортні пригоди становлять серйозну проблему для суспільства та економіки, що призводить до великих людських та матеріальних втрат. Сучасні технології можуть бути використані для зменшення кількості дорожньо-транспортних пригод та поліпшення безпеки на дорозі. Одним із способів досягнення цієї мети є використання технологій машинного навчання для виявлення та аналізування відеозаписів з камер спостереження. Дослідження методу визначення учасників та кадру моменту дорожньо-транспортної пригоди на основі машинного навчання має велику актуальність у зв'язку зі зростанням кількості транспортних пригод на дорогах. Використання вхідного відеопотоку може значно спростити процес визначення учасників та кадру моменту пригоди, що може збільшити швидкість реакції служб аварійної допомоги і поліції. Мета роботи і завдання дослідження. Метою роботи є розробка методу визначення учасників і кадру моменту дорожньо-транспортної пригоди за вхідним відеопотоком на основі машинного навчання. Завдання наукового дослідження: – провести пошук та аналіз вихідних матеріалів; – виявити існуючі системи з подібним функціоналом; – провести пошук засобів розробки; – розробити структуру програмного продукту та спланувати взаємодію користувача з системою; – розробити програмний продукт, який буде відповідати вимогам; – провести тестування програмного продукту та перевірити його на працездатність. Об’єктом дослідження є використання технологій машинного навчання, зокрема глибинного навчання та нейромереж, для розв'язання задачі визначення учасників та кадру моменту пригоди. Предметом дослідження є метод на основі машинного навчання для задачі визначення учасників і кадру моменту дорожньо-транспортної пригоди за вхідним відеопотоком. Методи дослідження. У магістерській дисертації розглядається використання передових методів машинного навчання та обробки відеоданих для ідентифікації учасників і визначення моментів дорожньо-транспортних пригод. Особливий акцент робиться на застосуванні глибоких нейронних мереж, зокрема конволюційних нейронних мереж, а також інших алгоритмів машинного навчання, використовуючи програмні мови та інструменти, як-от Python, Keras, а також використання веб-фреймворків для реалізації інтерфейсу користувача. Практичне значення одержаних результатів у цій магістерській дисертації полягає у створенні інноваційного інструменту, який може бути застосований для поліпшення дорожньої безпеки та ефективності розслідувань ДТП. Розроблений метод ідентифікації учасників і визначення моментів аварій через аналіз відеопотоків забезпечує швидше та точніше виявлення обставин пригоди, що важливо для правоохоронних органів та служб екстреної допомоги. Також цей підхід може бути використаний у системах моніторингу дорожнього руху, сприяючи профілактиці аварій та підвищенню безпеки на дорогах. Ключові слова: CNN, нейронні мережі, веб-застосунок, штучний інтелект, дорожньо-транспортні пригоди, класифікація, відеопотік.

Опис

Ключові слова

CNN, нейронні мережі, веб-застосунок, штучний інтелект, дорожньо-транспортні пригоди, класифікація, відеопотік

Бібліографічний опис

Човган, І. О. Метод визначення учасників і кадру моменту дорожньо-транспортної пригоди за вхідним відеопотоком на основі машинного навчання : магістерська дис. : 121 Інженерія програмного забезпечення / Човган Іванна Олександрівна. – Київ, 2024. – 101 с.

DOI