2024
Постійне посилання на фонд
Переглянути
Перегляд 2024 за Автор "Asadov, H. H."
Зараз показуємо 1 - 2 з 2
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Investigation of Possibility of Measuring the Albedo of Earth’s Surface in Visible and Near Infrared Bands in Conditions of Aerosol Pollution of Atmosphere Using Unmanned Aerial Vehicles(КПІ ім. Ігоря Сікорського, 2024) Asadov, H. H.; Alieva, A. J.; Ashrafov, M. G.It is well-known that such processes as agricultural activities, urbanization processes, climatic changes leading to abnormal precipitation, etc. affect the magnitude of the Earth’s albedo. At the same time, the results of remote albedo measurement in visible and near infrared bands also depend on the degree of aerosol pollution of the atmosphere. These factors leading to changes in the earth’s albedo lead to the need for periodic measurements of regional values of the albedo of the earth’s surface. There are a number of problems related to measuring the albedo of the earth, related to the spatial and temporal variability of this indicator. These include the dependence of albedo on the zenith angle of the Sun, the need to create albedo measurement networks in the form of numerous geographically distributed pyranometers, the dependence of satellite albedo measurements on the state of the atmosphere, leading to the need for inter-satellite calibration, or groundbased validation measurements. At the same time, the issue of fully accounting for the effect of atmospheric aerosol on the results of measuring the albedo of the Earth’s surface is still open. The article is devoted to the measurement of the Earth’s albedo visible and near infrared bands using UAVs in conditions of aerosol pollution of the atmosphere. The model of single scattering of the optical source signal of an atmospheric aerosol was adopted as the basis of the conducted research. The interrelation of such optical indicators as the optical thickness of the aerosol and the albedo of the Earth’s surface is analyzed. A criterion for the effectiveness of atmospheric measurements using UAVs is proposed, in which efficiency is defined as the ratio of the total radiation entering the on-board spectroradiometer to the amount of extra-atmospheric radiation from the Sun. By switching from a discrete model to a continuous model created to calculate the proposed efficiency criterion, it is shown that with a synchronous change in the optical thickness of the aerosol and albedo, according to the calculated law, the minimum efficiency of measurements of the albedo of the earth’s surface is achieved.Документ Відкритий доступ Method for Detecting Small Aerial Objects Appearing in Field of View in Controlled Part of Celestial Sphere in Infrared Range(КПІ ім. Ігоря Сікорського, 2024) Agaev, F. G.; Asadov, H. H.; Aliyeva, G. V.The article is devoted to the developed method of infrared detection of group remote high-temperature objects. The problem of searching for the extremum of the total infrared radiation of a group of non-identical thermal objects carrying out a group flight is formulated and solved using the variational optimization method. Examples of such objects include the flight of aircraft in a group, ground scenes involving a group of objects of interest, temperature diagnostics of various points of buildings, control of automobile traffic on highways, control of group flights of birds, drones, etc. A condition has been determined under which the total value of the infrared radiation flux of thermal elements in the group reaches an extreme value. The regression relationship function between the emission coefficient of the thermal elements of the group and the atmospheric transmission coefficient has been calculated. The problem of optimal control of small thermal objects randomly distributed in the atmosphere is practically solved using a ground-based multiradar system in which elements of a multi-radar system monitor flying objects with different values of the radiation coefficient on the routes and different atmospheric transparencies. The proposed method can be used for remote control of flight or the functioning of a group of flying thermal objects with different values of the radiation coefficient with a special procedure for selecting a controlled aircraft for observation by an element of a multi-radar system. The property of the extremum of the total IR radiation flux was found in the inverse relationship between the radiation coefficients of all controlled flying objects and the transparency of the atmosphere along the route between the multi-radar element and the controlled flying object.