Кафедра прикладної математики (ПМА)
Постійне посилання на фонд
Переглянути
Перегляд Кафедра прикладної математики (ПМА) за Ключові слова "004.62:510.22:004.023"
Зараз показуємо 1 - 5 з 5
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Математичне та програмне забезпечення системи аналізу відтоку клієнтів(КПІ ім. Ігоря Сікорського, 2024) Сафонов, Артур Валерійович; Третиник, Віолета ВікентіївнаДисертацію виконано на 135 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 42 найменувань. У роботі наведено 45 рисунків та 10 таблиць. Актуальність теми. Проектування системи для аналізу відтоку клієнтів з використанням методів машинного навчання є дуже актуальною задачею в сучасному бізнес-середовищі. У сучасному світі конкуренція між компаніями росте, і залучення нових клієнтів стає дорожчим та складнішим завданням. Однак важливим аспектом підтримання прибутковості є збереження існуючих клієнтів. Зменшення відтоку клієнтів стало однією з ключових цілей для багатьох компаній, оскільки втрата клієнтів може призвести до значного зниження доходів та втрати ринкової частки. З використанням системи для аналізу відтоку клієнтів, побудованої на основі методів машинного навчання, компанії можуть: • Прогнозувати відтік клієнтів: Аналізуючи історичні дані та поведінку клієнтів, система може передбачити, які клієнти можуть ризикувати відтоком, і вчасно приймати заходи для їх утримання. • Покращувати сервіс та персоналізацію: Збір та аналіз даних про клієнтів дозволяє компаніям краще розуміти їхні потреби і надавати персоналізований сервіс. • Розробляти маркетингові стратегії: Система може допомогти визначити ефективні маркетингові стратегії для збереження клієнтів та виведення їхнього життєвого циклу. • Вдосконалювати продукти та послуги: Аналіз відтоку дозволяє ідентифікувати слабкі місця у продуктах або послугах, які можуть призводити до втрати клієнтів, і вдосконалювати їх. • Збільшувати прибутковість: Зменшення відтоку клієнтів може призвести до збільшення прибутків компанії без необхідності постійно привласнювати нових клієнтів. Отже, аналіз та прогнозування відтоку клієнтів з використанням методів машинного навчання стає важливим інструментом для підтримки стабільного та прибуткового розвитку бізнесу в сучасних умовах. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Мета дослідження "Система для аналізу відтоку клієнтів з використанням методів машинного навчання " полягає в розробці і реалізації інтелектуальної системи, яка спроможна аналізувати та прогнозувати відтік клієнтів у компанії з використанням методів машинного навчання. Основні задачі дослідження можуть включати: 1. Збір та підготовка даних: Збір та обробка історичних даних про клієнтів, їхню активність та відтік. Це включає в себе структурування даних, обробку відсутніх значень та їх підготовку для подальшого аналізу. 2. Вибір методів машинного навчання: Визначення найбільш підходящих методів машинного навчання для завдання аналізу відтоку. Це може включати класифікаційні моделі, класичні методи аналізу даних, або нейронні мережі. 3. Розробка та навчання моделей: Створення та навчання моделей на підготовлених даних для прогнозування відтоку клієнтів. Це може включати в себе оптимізацію гіперпараметрів та забезпечення вищої точності прогнозування. 4. Тестування та ефективність моделей: Проведення тестів на окремому наборі даних для оцінки точності та ефективності моделей. Визначення метрик, таких як точність, чутливість та специфічність. 5. Впровадження системи в бізнес-процес: Інтеграція розробленої системи в робочий процес компанії з метою моніторингу та управління відтоком клієнтів. 6. Моніторинг та оптимізація: Постійний моніторинг роботи системи та її оптимізація для покращення точності прогнозування та зменшення відтоку клієнтів. 7. Звітність і візуалізація результатів: Підготовка звітів та візуалізація результатів для команди компанії, що допомагає приймати ефективні рішення щодо зменшення відтоку. Об’єктом досліджень є клієнтська база компанії, історичні дані про клієнтів, методи машинного навчання, аналіз даних, моделі прогнозування відтоку клієнтів, існуючі реалізації систем аналізу відтоку клієнтів. Предметом досліджень є розробка математичної та програмної системи для аналізу відтоку клієнтів на основі методів машинного навчання (створення та оптимізація моделей, інтеграція зі структурами компанії). Методи дослідження. Для розв’язання поставленої задачі використовувалися такі методи: аналіз літератури та попередніх досліджень, кореляційний аналіз, машинне навчання, системний аналіз. Наукова новизна одержаних результатів складається з таких положень: – комплексний підхід до визначення відтоку: Удосконалено методологію аналізу відтоку, інтегруючи не лише фінансові показники, але і поведінкові метрики клієнтів; – використання високоточних методів машинного навчання: Вперше застосовано алгоритм FastForest для прогнозування відтоку клієнтів в системі. Це дозволяє досягти високої точності в результатах; – розробка методів для діагностики та відлагодження моделі. Розроблена система здатна працювати в реальному часі, що є важливим кроком у практичному впровадженні систем аналізу відтоку клієнтів. Практичне значення одержаних результатів. Результати даного дослідження мають виражене практичне значення та можуть бути використані в ряді напрямів: – оптимізація бізнес-процесів. Система аналізу відтоку клієнтів може стати незамінним інструментом для маркетингових відділів компаній різних галузей. Це дозволить прогнозувати можливий відтік клієнтів та своєчасно реагувати на цю інформацію; – підвищення конкурентоспроможності. Застосування методів машинного навчання для аналізу клієнтських даних є трендом сучасності, і компанії, які це роблять, отримують конкурентну перевагу; – персоналізація маркетингових кампаній. За допомогою розробленої системи можна сегментувати клієнтів на основі їхньої «схильності» до відтоку, що дозволяє проводити більш цільові маркетингові кампанії; – економія ресурсів. За допомогою прогнозування відтоку можна значною мірою зекономити ресурси, які би інакше були витрачені на залучення нових клієнтів; – скорочення фінансових втрат. Проактивне управління відтоком клієнтів може зменшити фінансові втрати та підвищити прибутковість бізнесу. Апробація результатів дисертації. Основні положення й результати роботи представлено на шістнадцятій науковій конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг» ПМК-2023 (Київ, 28-30 листопада 2023 р.) Публікації. Результати дисертації викладено в 1 науковій праці, у тому числі: − в 1 публікації у тезах доповідей конференцій.Документ Відкритий доступ Математичне та програмне забезпечення системи аналізу якості питної води(КПІ ім. Ігоря Сікорського, 2024) Чебан, Ростислав Сергійович; Лось, Валерій МиколайовичДисертацію виконано на 84 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 20 найменувань. У роботі наведено 20 рисунків та 4 таблиці. Актуальність теми. Важливість питання якості питної води важко переоцінити від побутового до політичного рівня. Все частіше споживачів непокоїть питання безпеки вживаної питної води та кількості якісної питної води в джерелах і родовищах. На екологічних конференціях піднімаються питання про рівень якості питної води в Європі вже в 2030 році. Звісно, актуальності питання питної води в Україні додає підрив Каховської гідроелектростанції - військовий злочин і акт екоциду здійснений росією 6 червня 2023 року. Водосховище було джерелом води населених пунктів Запорізької, Херсонської і Дніпропетровської областей. За даними Укргідроенерго, внаслідок підриву греблі Україна втратила 35-40% запасів питної води. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета дослідження. Розробити систему оцінювання якості питної води для побутових користувачів, що вирішує такі задачі користувача: Аналіз якості питної води за встановленими критеріями; Вибір найкращого варіанту в залежності від категорії користувача; Прогнозування наслідків для здоров’я при неповному дослідженні складу води; Систематизувати та візуалізувати результати досліджень Мета і задачі дослідження. Перелік завдань, які потрібно розробити: Аналіз і порівняння існуючих методів аналізу якості питної води. Первинна обробка, очищення, data featuring, класифікація, тренування отриманих даних про дослідження питної води. Валідація системи аналізу якості питної води, оцінка ефективності розробленої системи. Розгортання і підтримка WEB-додатку з користувацьким інтерфейсом Об’єктом дослідження є характеристичні методи для хімічної оцінки речовини, література з хімії води, існуючі математичні методи аналізу якості питної води, системи методів аналізу якості питної води, установки обчислення аналізу якості питної води. Предметом дослідження є система аналізу для прогнозування та візуалізації споживчої оцінки якості питної води, на основі моделей електрохімії та хроматографії. Наукова новизна одержаних результатів складається з таких положень: – реалізовано систему прогнозування негативних наслідків для організму людини при неповному дослідженні питної води; – встановлено залежності між спрогнозованим кількісним складом питної води з негативними наслідками для організму людини при довготривалому вживанні питної води. Практичне значення одержаних результатів. Розроблене програмне забезпечення можна використовувати для прогнозування негативних наслідків для організму людини з ризикових груп населення під час довготривалому вживанні питної води. Апробація результатів дисертації. Основні положення й результати роботи представлено на Науковій конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг ПМК 2023» Публікації. Результати дисертації викладено в 1 науковій праці: - у 1 публікації у тезах, включених до Переліку наукових фахових видань України з технічних наукДокумент Відкритий доступ Математичне та програмне забезпечення системи для рекомендації відеоконтенту(КПІ ім. Ігоря Сікорського, 2024) Бондарчук, Олександр Олександрович; Третиник, Віолета ВікентіївнаДисертацію виконано на 83 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 20 найменувань. У роботі наведено 21 рисунків та 5 таблиць. Актуальність теми. З погляду стрімкої цифрової трансформації та зростаючого обсягу відеоконтенту в Інтернеті, рекомендаційні системи стають ключовим інструментом для користувачів і платформ. З одного боку, рекомендаційні системи допомагають користувачам знаходити відповідний та цікавий контент в масиві доступних опцій. Це особливо важливо в умовах інформаційного перенасичення, коли велика кількість відеоконтенту може призвести до перевантаження та втрати орієнтації. З іншого боку, для платформ і постачальників відеоконтенту рекомендаційні системи є ефективним інструментом збільшення залученості та задоволення користувачів. Здатність точно рекомендувати вміст, який відповідає індивідуальним смакам та інтересам, може значно підвищити якість взаємодії з платформою та підвищити лояльність користувачів. Ураховуючи динаміку розвитку технологій, таких як штучний інтелект та глибоке навчання, рекомендаційні системи для відеоконтенту стають більш точними та персоналізованими. Це відкриває нові перспективи для покращення якості рекомендацій та розширення можливостей відеоіндустрії. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Метою роботи є дослідження та розробка ефективних алгоритмів для рекомендаційних систем, що дозволяють вибирати рекомендації з прийнятним рівнем релевантності в умовах великої кількості користувачів за неповної або відсутньої інформації про їх переваги, а також розробка архітектури системи, яка використовує такі алгоритми. Для досягнення вказаної мети було розв’язано такі задачі: • Розроблена та реалізована автоматизована система рекомендацій для підбору відеоконтенту користувачам. • Була вирішена проблема «холодного старту» (підбору рекомендацій для нових користувачів та нових фільмів). Об’єкт дослідження є база відеоконтенту компанії, історичні дані про відеоконтент, користувачів та їх вподобання, методи побудови рекомендаційних систем, існуючі реалізації рекомендаційних систем. Предметом дослідження є розробка математичного та програмного забезпечення системи для рекомендацій відеоконтенту на основі гібридних методів побудови рекомендаційних систем (створення та оптимізація моделей, інтеграція в веб-застосунок). Методи досліджень. Аналіз даних відеоконтенту, реалізація гібридної рекомендаційної системи, математичне моделювання впливу параметрів на результат, порівняльний аналіз з іншими методами, а також використання метрик для оцінки ефективності системи. Наукова новизна одержаних результатів складається з таких положень: − розроблено ефективне впровадження гібридного методу рекомендаційної системи для відеоконтенту, що використовує динамічний підхід до обчислення параметрів та успішно вирішує проблему "холодного старту". Практичне значення одержаних результатів. Розроблена система дозволяє користувачам користуватися рекомендаційною системою для відеоконтенту через веб-застосунок, отримувати релевантні пропозиції для переглядів та взаємодіяти з користувачем, давати можливість оцінювати переглянутий контент та зі збільшенням оцінок користувача, покращувати рекомендації. Апробація результатів дисертації. Основні положення й результати роботи представлено на XVІ науково-практичній конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг – ПМК-2022» (Київ, 16-18 листопада 2023 р.) та опубліковані у збірнику тез за результатами конференції. Публікації. Результати дисертації викладено в 1 науковій праці: − 1 публікація у тезах конференцій.Документ Відкритий доступ Математичне та програмне забезпечення системи семантичного аналізу відгуків на заклади харчування(КПІ ім. Ігоря Сікорського, 2024) Бевзюк, Костянтин Андрійович; Ліскін, В’ячеслав ОлеговичДисертацію виконано на 81 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 24 найменувань. У роботі наведено 51 рисунків та 4 таблиць. Актуальність теми. У світі де інформація змінюється щосекунди дуже важко услідкувати за всім разом, тому чисельна оцінка відгуків закладів харчування спрощує наше повсякденне життя, це тим самим прискорює процеси аналізу інформації Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Метою дослідження є семантичний аналіз відгуків на заклади харчування, в якості прикладу буде взято кавʼярню «Starbucks». Для досягнення вказаної мети було розв’язано такі задачі: - проаналізувати існуючі рішення та знайти оптимальне для вирішення семантичного аналізу поставленої задачі; - створити математичну модель рішення для розв’язку семантичного аналізу; - імплементувати програмне забезпечення для обранної математичної моделі; - створити інтерфейс користувача для роботи з програмним засобом; Об’єктом дослідження є розробка, підбір параметрів та навчання моделі, яка зможе класифікувати великі обсяги текстових даних. Предметом дослідження є математичне та програмне забезпечення системи класифікації відгуків на заклади харчування за допомогою нейронних мереж на базі «трансформерів», це дозволить дати кількісну оцінку тексту і може бути використано для покращення якості обслуговування та задоволення потреб клієнтів у сфері гастрономії та гостинност Методи дослідження. Для розв’язання поставленої задачі використовувалися такі методи: нейронні мережі на базі рекурентних нейронних зв’язків, нейронні мережі на базі «трансформерів». Наукова новизна одержаних результатів. Було запропоновано безкоштовний веб-застосунок для семантичного аналізу коментарів на заклади харчування. Запроваджено новий метод розподілу вхідного датасету на тествоий, валідаційний та тренувальні частини. Практичне значення одержаних результатів. В майбутньому це дає поштовх розширювати моделі для обробки людської мови, а саме даний приклад легко масштабувати на базу української мови або будь-якої іншої. Апробація результатів дисертації. Основні положення й результати роботи представлено на XVІ науково-практичній конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг – ПМК-2023» (Київ, 28-30 листопада 2023 р.) та опубліковані у збірнику тез за результатами конференції. Публікації. Результати дисертації викладено в 1 науковій праці: - 1 публікація у тезах конференцій.Документ Відкритий доступ Інтелектуальна система розпізнавання статі людини за зображенням обличчя(КПІ ім. Ігоря Сікорського, 2024) Лозко, Олександр Олексійович; Третиник, Віолета ВікентіївнаДисертацію виконано на 82 аркушах, вона містить 2 додатки та перелік посилань на використані джерела з 15 найменувань. У роботі наведено 21 рисунок та 2 таблиці. Актуальність теми. Тема "Інтелектуальна система розпізнавання статі людини за зображенням обличчя" має велику актуальність в сучасному світі з різних перспектив. Системи розпізнавання статі можуть впливати на безпеку та контроль доступу, допомагати в рекламі та маркетингу для точного визначення цільової аудиторії, а також враховувати різницю між жінками та чоловіками в медичних дослідженнях. Використання цих технологій може також оптимізувати роботу в різних галузях, покращуючи ефективність та забезпечуючи ефективніше обслуговування клієнтів. Однак разом із тим виникають питання етики та конфіденційності, що вимагає виваженого підходу до розробки та впровадження таких систем. Розвиток цієї технології вносить свій внесок у сферу штучного інтелекту, розширюючи можливості комп'ютерного зорового сприйняття та глибокого навчання. Таким чином, тема розпізнавання статі за зображенням обличчя важлива як з точки зору практичних застосувань, так і з точки зору наукового розвитку. Зв’язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась згідно з планом науково-дослідних робіт кафедри прикладної математики Національного технічного університету України «Київський політехнічний інститут імені Ігоря Сікорського». Мета і задачі дослідження. Основною метою цього дослідження є вивчення та вдосконалення алгоритмів розпізнавання статі на основі зображень обличчя з метою досягнення високої точності та ефективності. Для досягнення цієї основної мети можуть бути сформульовані наступні задачі дослідження: - Збір та підготовка даних: Здійснення комплексного процесу збору та підготовки даних для подальшого використання у дослідженні. Це включає в себе вибір та накопичення наборів фотографій обличчя, а також їх анотацію з вказанням статі. Дані повинні бути репрезентативними та різноманітними, щоб система розпізнавання була адаптована до різних типів зображень та враховувала різноманіття особових характеристик. - Огляд існуючих рішень: Проведення аналізу наявних підходів та технологій у галузі розпізнавання статі за зображенням обличчя. - Вдосконалення алгоритмів розпізнавання статі: Використовуючи зібрані дані та знання про існуючі рішення, вдосконалення найкращих алгоритмів розпізнавання статі на базі штучного інтелекту. Основна мета - досягнення точності та швидкодії, а також адаптація до різноманітних умов та контекстів. - Валідація розпізнавання статі: Проведення експериментів та оцінка ефективності розробленої системи на реальних даних, порівняння результатів з наявними розробками та стандартами. Об’єкт дослідження. Об’єктом дослідження є технології розпізнавання обличчя, зосереджені на визначенні статевих особливостей осіб на зображеннях. Предмет дослідження. Предметом дослідження є моделі розпізнавання, спрямовані на точне визначення статі особи за її обличчям на фотографіях зроблені на мобільний телефон. Методи дослідження. Дослідження базувалося на використанні різноманітних методів машинного навчання для вирішення завдання бінарної класифікації статі людини за зображенням обличчя. Зокрема, порівнювались результати використання методів, таких як Logistic Regression та Decision Tree, із запропонованим підходом на основі архітектури VOLO. Досліджено ефективність та порівняно характеристики кожного методу з точки зору точності, Recall, Precision та F1-мери. Наукова новизна одержаних результатів. Отримані результати підтверджують високу ефективність та переваги запропонованого підходу, зокрема, архітектури VOLO, порівняно із традиційними методами Logistic Regression та Decision Tree. Застосування моделі VOLO показало значущий прогрес у розпізнаванні статі за зображенням обличчя, що вказує на його великий потенціал у практичних застосуваннях. Практичне значення одержаних результатів. Отримані результати мають важливе практичне застосування в сферах безпеки, відеоспостереження, психологічних та маркетингових досліджень. Застосування моделі VOLO та порівняння із традиційними методами надають нові можливості для розробки високоефективних та точних систем розпізнавання статі на зображеннях обличчя. Апробація результатів дисертації. Основні положення й результати роботи представлено на XVІ науково-практичній конференції магістрантів та аспірантів «Прикладна математика та комп’ютинг – ПМК-2023» (Київ, 28-30 листопада 2023 р.) та опубліковані у збірнику тез за результатами конференції. Публікації. Результати дисертації викладено в 1 науковій праці: - 1 публікація у тезах конференцій.