Two- and three-soliton solutions to one equation of the Korteweg-de Vries type

Вантажиться...
Ескіз

Дата

2024

Автори

Науковий керівник

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

In 1895 two Netherlandish applied mathematicians Korteweg and de Vries made a breakthrough in physics: they introduced a nonlinear partial differential equation describing motion of truly magic water wave, which is now called the Korteweg-de Vries equation. In the middle of 1960’s this equation was found out to be closely related to the Schröodinger equation. Due to this fact, the Korteweg-de Vries equation is interpreted as a condition for compatibility of an abstract system of two auxiliary linear equations, and the solution of this equation can be found using the Darboux transformation apparatus. This method allows us to construct new solutions to a nonlinear equation using a known one. General formulas for the Darboux transformation were obtained earlier. In the given paper we consider mathematical application of the Darboux transformation in order to obtain solutions of the Korteweg-de Vries equation in explicit form. The resulting formulas describe some interaction of multisoliton solutions, namely, two- and three- soliton solutions.

Опис

Ключові слова

the Korteweg-de Vries equation, soliton, solitary solution, the Darboux transformation, the Darboux theorem, Schrödinger operator, Sturm-Liouville problem, one-soliton solution, multisoliton solution, twosoliton solution, three-soliton solution

Бібліографічний опис

Tsukanova, A. O. Two- and three-soliton solutions to one equation of the Korteweg-de Vries type / A. O. Tsukanova // Теоретичні і прикладні проблеми фізики, математики та інформатики : матерiали XXII Всеукраїнської науково-практичної конференцiї студентiв, аспiрантiв та молодих вчених, [Київ], 13−17 травня 2024 р. / КПІ ім. Ігоря Сікорського. – Київ, 2024. – С. 53-56.

DOI