Digital Twins for Land Use Change
Вантажиться...
Дата
2025
Науковий керівник
Назва журналу
Номер ISSN
Назва тому
Видавець
Springer Cham
Анотація
Rapid environmental, socio-economic, and geopolitical changes are accelerating transformations in land use patterns worldwide. To effectively monitor and predict these dynamics, DTs offer a promising approach by integrating real-time Earth observation data, climate models, AI-driven analytics, and socio-economic indicators. This paper identifies a critical gap in the application of Digital Twins (DT) frameworks for land use change monitoring, which remains underexplored. We propose a novel two-timescale DT architecture designed to track both rapid event-driven land cover changes (such as floods, wildfires, war-induced damage) and gradual long-term transformations, such as climate-induced agricultural shifts and urban expansion. By bridging the gap between advanced Earth observation technologies and decision-making processes, the proposed framework contributes to the development of AI-enhanced DT systems that facilitate climate adaptation, disaster response, and long-term sustainability in dynamic land systems.
Опис
Ключові слова
Digital Twins, Land use change, Earth observation
Бібліографічний опис
Digital Twins for Land Use Change / Nataliia Kussul, Gregory Giuliani, Andrii Shelestov, Sofiia Drozd, Andrii Kolotii, Yevhenii Salii, Anton Cherniatevych, Oleksandr Yavorskyi, Volodymyr Malyniak, Charlotte Poussin // System Analysis and Data Mining. Studies in Systems, Decision and Control / ed. by M. Zgurovsky, N. Pankratova. - Vol 609. – Cham : Springer, 2025. – Pp. 371-389. – Bibliogr.: 30 ref.