Digital Twins for Land Use Change
| dc.contributor.author | Kussul, Nataliia | |
| dc.contributor.author | Giuliani, Gregory | |
| dc.contributor.author | Shelestov, Andrii | |
| dc.contributor.author | Drozd, Sofiia | |
| dc.contributor.author | Kolotii, Andrii | |
| dc.contributor.author | Salii, Yevhenii | |
| dc.contributor.author | Cherniatevych, Anton | |
| dc.contributor.author | Yavorskyi, Oleksandr | |
| dc.contributor.author | Malyniak, Volodymyr | |
| dc.contributor.author | Poussin, Charlotte | |
| dc.date.accessioned | 2025-11-25T14:37:07Z | |
| dc.date.available | 2025-11-25T14:37:07Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Rapid environmental, socio-economic, and geopolitical changes are accelerating transformations in land use patterns worldwide. To effectively monitor and predict these dynamics, DTs offer a promising approach by integrating real-time Earth observation data, climate models, AI-driven analytics, and socio-economic indicators. This paper identifies a critical gap in the application of Digital Twins (DT) frameworks for land use change monitoring, which remains underexplored. We propose a novel two-timescale DT architecture designed to track both rapid event-driven land cover changes (such as floods, wildfires, war-induced damage) and gradual long-term transformations, such as climate-induced agricultural shifts and urban expansion. By bridging the gap between advanced Earth observation technologies and decision-making processes, the proposed framework contributes to the development of AI-enhanced DT systems that facilitate climate adaptation, disaster response, and long-term sustainability in dynamic land systems. | |
| dc.description.sponsorship | This research was conducted within the “DT4LC—Developing Scalable Digital Twin Models for Land Cover Change Detection Using Machine Learning” project, supported by the Swiss National Science Foundation (SNSF) as part of the Ukrainian-Swiss Joint Research Programme (USJRP). | |
| dc.format.pagerange | P. 371-389 | |
| dc.identifier.citation | Digital Twins for Land Use Change / Nataliia Kussul, Gregory Giuliani, Andrii Shelestov, Sofiia Drozd, Andrii Kolotii, Yevhenii Salii, Anton Cherniatevych, Oleksandr Yavorskyi, Volodymyr Malyniak, Charlotte Poussin // System Analysis and Data Mining. Studies in Systems, Decision and Control / ed. by M. Zgurovsky, N. Pankratova. - Vol 609. – Cham : Springer, 2025. – Pp. 371-389. – Bibliogr.: 30 ref. | |
| dc.identifier.doi | https://doi.org/10.1007/978-3-031-97529-5_22 | |
| dc.identifier.uri | https://ela.kpi.ua/handle/123456789/77382 | |
| dc.language.iso | en | |
| dc.publisher | Springer Cham | |
| dc.relation.ispartof | System Analysis and Data Mining, Studies in Systems, Decision and Control | |
| dc.subject | Digital Twins | |
| dc.subject | Land use change | |
| dc.subject | Earth observation | |
| dc.title | Digital Twins for Land Use Change | |
| dc.title.alternative | Цифрові двійники для зміни землекористування | |
| dc.type | Book chapter |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Digital_Twins_for_Land_Use_Change.pdf
- Розмір:
- 1.56 MB
- Формат:
- Adobe Portable Document Format
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 8.98 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: