Анотовані описи звітів про НДР (ВТМПМ)
Постійне посилання зібрання
Переглянути
Перегляд Анотовані описи звітів про НДР (ВТМПМ) за Назва
Зараз показуємо 1 - 3 з 3
Результатів на сторінці
Налаштування сортування
Документ Відкритий доступ Створення принципово нових "гібридних" каркасних матеріалів для підвищення стійкості електродів та продуктивності технології контактного зварювання(КПІ ім. Ігоря Сікорського, 2020) Солодкий Є. В.; Solodkyi I. V.Встановлено закономірності формування каркасних матеріалів в системі LaB6- TiB2-Cu. Встановлення впливу технологічних параметрів процесу отримання в умовах іскроплазмового спікання та модифікації поверхні керамічних армованих частинок на структуру, механічні та електричні властивості тугоплавкого каркасу. Методом іскроплазмового спікання при температурах 850 °С-1100 °С було отримано композити (LaB6- TiB2)-Cu, з вмістом тугоплавкої сполуки 2,5-70 об.%. Встановлено, що вміст тугоплавких частинок LaB6-TiB2 сферичної форми у кількості понад 30 об.% забезпечує формування безперервного каркасу в процесі іскроплазмового спікання порошкових сумішей. Показано ефективність зміцнення границь розділу між мідною матрицею та керамічними частинками шляхом армування волокнами ТіВ2. Експериментально показано, що за рахунок армування границі розділу міцність «гібридного» каркасного матеріалу зросла з 255±15 МПа до 496±25 МПа. Зміцнення відбувається за рахунок участі керамічних високоміціних частинок в процесі руйнування. Встановлено, що металокерамічні композити мають електроопір (1,09- 5,76 мкОм·см) на рівні традиційних електродів із міді, легованої цирконієм, нікелем чи хромом при цьому їх твердість та міцність перевищує аналоги на 60 та 70 %, відповідно. Встановлено вплив експлуатаційних умов точкового зварювання на структуру, хімічний та фазовий склад виготовлених електродів було виконано випробування 3-х пар електродів з різною кількістю високоміцної керамічної фази. Випробування проводили на змінного струму. Робоча поверхня електроду становила 4 мм. Контроль структури, хімічного і фазового складу проводили кожні 100 циклів. Виготовлено, що після 500 циклів роботи зміна хімічного складу та структури не відбувається.Документ Відкритий доступ Створення проривних технологій виробництва деталей складної форми з композиційних матеріалів для екстремальних умов експлуатації(КПІ ім. Ігоря Сікорського, 2020) Шемет В. Ж.; Shemet Volodymyr Zh.Розроблено основи нетривіальних адитивних технологій 3D–друку та холодного газодинамічного напилення (ХГН) для виготовлення виробів складної форми з металокерамічних та керамічних композитів, а також із нового класу багатокомпонентних металевих сплавів, що докорінно різняться від існуючих аналогів витратних способів ливарного виробництва, які до того ж неспроможні забезпечити рівень властивостей матеріалу, необхідний для роботи при температурах вищих за 600 °С, в умовах швидкісного багаторазового нагрівання-охолодження (1500 град/хв.), циклічних навантажень та в агресивному окислювальному середовищі. Розроблені технології базуються на запровадженні поетапного виробничого циклу, який включає: 1) виготовлення порошків із композиційних металокерамічних матеріалів та високоентропійних сплавів (ВЕС) з композиційною структурою для подальшого використання в методі пошарового 3D-друку або ХГН; 2) виготовлення каркасної заготовки з наперед заданою геометрією, пористістю та морфологією пор шляхом пошарового 3Dдруку отриманих порошків або формування композиційного матеріалу методом ХГН; 3) виготовлення деталей шляхом просочування матричним розплавом пористих каркасних заготовок або моделей-прототипів з отриманням композиту багаторівневої ієрархічної структури. Виготовлення каркасу за допомогою пошарового 3D-друку порошків відкриває можливість варіювати вмістом армуючої фази в широких межах і виготовляти із високотемпературних матеріалів надлегкі вироби надскладної форми в умовах відносно низьких температур, що натепер є недосяжним для жодного відомого методу. Встановлені оптимальні технологічні параметри (хімічний та фазовий склад, структура вихідних матеріалів, потужність та тривалість впливу лазерного пучка; товщина шару порошку; спосіб його подачі; температура та час нагріву, швидкість друку, температурночасові параметри та спосіб просочування, розмірні характеристики армуючого каркасу) процесу виготовлення каркасних матеріалів, що забезпечують найвищі експлуатаційні характеристики. Вперше в світовій практиці експериментально обґрунтована можливість консолідації порошку ВЕС з високою твердістю (7,6-10 ГПа) при повному збереженні наноструктурного стану та фазового складу внаслідок застосування інноваційної техніки ХГН.Документ Відкритий доступ Фізика швидкісного електронно-променевого спікання гомогенних та гетерогенних високотемпературних матеріалів(КПІ ім. Ігоря Сікорського, 2021) Богомол, Юрій Іванович; Bogomol, IuriiРозробка присвячена швидкісному електронно-променевому спіканню пресовок з металевих та металокерамічних матеріалів на основі тугоплавких сполук. Встановлено основні закономірності структуроутворення в умовах електронно-променевого спікання металевих та металокерамічних матеріалів. Методами комп’ютерного моделювання проведено дослідження впливу пористості та пористої структури пресовок, спечених в умовах електронно-променевого спікання, на їх температурне поле та теплопровідність. Досліджено вплив параметрів електронно-променевого нагрівання на величину залишкових макронапружень та мікронапружень в матеріалі. Проведено аналіз напружено-деформованого стану пресовок, одержаних електронно-променевим спіканням та його впливу на процеси ущільнення. Показано, що наявність залишкових напружень має безпосередній вплив на проходження структурної та подальшої пластичної деформації порошкових пресовок різної природи. Встановлено, що механізми швидкісного ущільнення під час локального електронно-променевого нагрівання пресовок з металевих та металокерамічних матеріалів пов’язані з виникненням внутрішніх залишкових напружень в результаті термічного розширення матеріалу. Показано, що збереження цілісності заготовки і її інтенсивне ущільнення в умовах локального нагрівання стає можливим у випадку, коли термічне розширення в об’ємі циліндричної пресовки викликають напруження, що не перевищують межу міцності матеріалу. Одержані результати дозволили розробити основи принципово нової технології швидкісного електронно-променевого спікання багатофункціональних композиційних матеріалів на основі широкого спектру тугоплавких металів та сполук, що дозволить в перспективі вивести дану технологію на промисловий рівень, на відміну від існуючих технологій швидкісного спікання, які використовуються, здебільшого, тільки на лабораторному рівні.