Neural Machine Translation: Basic Principles, Strengths and Weaknesses

Ескіз недоступний

Дата

2023

Науковий керівник

Назва журналу

Номер ISSN

Назва тому

Видавець

DeSympProMonograph

Анотація

The basic principles of Neural machine translation (NMT) involve the use of artificial neural networks to transform text from one language to another. The networks are trained on large bilingual cprpora to learn the statistical patterns and structures of both languages. In spite of a high speed of the translation process, NMT has also substantial drawbacks. They include the following: NMT models require large amounts of data and rely on the availability of parallel data required for training these models.

Опис

Ключові слова

Neural machine translation (NMT), NMT translation model, bilingual corpora

Бібліографічний опис

Shevchenko, O. M. Neural Machine Translation: Basic Principles, Strengths and Weaknesses // Shevchenko O. M., Ogurtsova O. L. // Monographic series «European Science». – 2023. – Book 18, Part 4. – P. 86-92.

DOI