Виявлення фішингових сайтів за допомогою методів машинного навчання

Вантажиться...
Ескіз

Дата

2023

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

Робота складається з 80 сторінок, містить 15 ілюстрацій, 3 таблиці, 1 додаток та 10 літературних джерел. Метою роботи є дослідження та покращення методів виявлення фішингових сайтів Об’єктом дослідження є фішингові сайти та фішингові електронні листи. Предметом дослідження є методи машинного навчання для класифікації фішингу Актуальність роботи можна пояснити зростаючою кількістю фішингових атак, в тому числі через фішингові веб-сайти. Методи дослідження: літературний огляд, аналіз, моделювання, класифікація, оцінка, порівняння результатів. Для класифікації фішингових сайтів використовувались методи: мультиноміальний наївний Байєсівський класифікатор MNB, логістична регресія LR, випадковий ліс RF, дерево рішень DT, k-найближчих сусідів KNN, метод опорних векторів SVM, та багатошаровий персептрон MP.

Опис

Ключові слова

фішинг, машинне навчання, веб-сайти, спам, URL, phishing, machine learning, websites, spam

Бібліографічний опис

Гурджия, В. В. Виявлення фішингових сайтів за допомогою методів машинного навчання : дипломна робота ... бакалавра : 125 Кібербезпека / Гурджия Валерія Вахтангівна. – Київ, 2023. – 80 с.

DOI