Autonomous car parking Model for different types of parking lots using deep reinforcement learning

Вантажиться...
Ескіз

Дата

2025

Науковий керівник

Назва журналу

Номер ISSN

Назва тому

Видавець

КПІ ім. Ігоря Сікорського

Анотація

This article explores the simulation of automated parking in a virtual environment with various types of parking lots. The objective of this research is to develop an intelligent model for autonomous parking that achieves high efficiency under simulated conditions across a broad range of common parking lot types. We use a deep reinforcement learning approach using the Proximal Policy Optimization (PPO) algorithm, complemented by Behavioural Cloning and Generative Adversarial Imitation Learning. Our fine-tuned model achieves state-of-the-art parking accuracy, ranging from 96.3% to 99.34%, depending on the type of parking lot. The developed simulation environment, based on the Unity game engine and the MLAgents plugin, enables high-quality visualization, simulation, and modelling capabilities, making it valuable for both educational and research purposes.

Опис

Ключові слова

automatic parking, self-driving car, deep reinforcement learning, Proximal Policy Optimization, ML-Agents, Unity, virtual environment

Бібліографічний опис

Oliinyk, V. Autonomous car parking Model for different types of parking lots using deep reinforcement learning / V. Oliinyk, Y. Danyliuk // Адаптивні системи автоматичного управління : міжвідомчий науково-технічний збірник. – 2025. – № 1 (46). – С. 237-246. – Бібліогр.: 18 назв.

ORCID